首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

2.
A new layered indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O (1) has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, NMR and TG analyses. The inorganic layer is built up by alternation of In-centred octahedra (InO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2, PO2(=O)(OH) and PO(=O)(OH)2) forming a 4.12-net. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds. It is the first indium phosphate compound templated by a transition-metal complex and is isostructural with GaPO-CJ14. Crystal data: 1, monoclinic, space group P21/m (No. 11), a=9.1700(18) Å, b=22.6923(5) Å, c=9.9116(2) Å, β=107.87(3)°, Z=4, R1[I>2σ(I)]=0.0287 and wR2(all data)=0.0939.  相似文献   

3.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

4.
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both.  相似文献   

5.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

6.
A new sodium gallophosphate, NaGa2(OH)(PO4)2, has been obtained by hydrothermal synthesis under autogeneous pressure at 473 K. It crystallizes in the P21/n space group with the cell parameters a=8.9675(8) Å, b=8.9732(5) Å, c=9.2855(7) Å, β=114.812(6)°, V=678.2 Å3 (Z=4). In its original three-dimensional framework, monophosphate groups share their apices with [Ga4O16(OH)2] tetrameric units, which are built from two GaO5(OH) octahedra and two GaO4(OH) trigonal bipyramids. The sodium cations are located in tunnels running along a, whereas the tunnels running along b are empty.  相似文献   

7.
A new three-dimensional open-framework gallophosphate: [H3N(CH2)2NH3]1/2·[Ga5 (PO4)4(OH)4] has been prepared by hydro(solvo)thermal synthesis in presence of ethylenediamine (en) as structure-directing agent. Its structure was determined by means of single-crystal X-ray diffraction analysis with the following crystal data: monoclinic space group C2/m, a=10.1604(9) Å, b=12.0085(15) Å, c=7.1892(7) Å, β=90.797(6)°, V=877.08(16) Å3, Z=2, R1=0.0264, wR2=0.0764. The total numbers of measured reflections and unique reflections were 3508 and 1300, respectively. It is built up from a new secondary building unit (SBU) Ga4P4O20(OH)4, in which Ga atoms exhibit distorted trigonal bipyramidal coordination and P atoms are in tetrahedral coordination. The SBU Ga4P4O20(OH)4 are linked into a layer by bridge oxygen atoms. The GaO4(OH)2 octahedra link the layers into a three-dimentional framework. Diprotonated ethylenediamine was found in the channel of the framework. The material was characterized by IR spectroscopy, 1H NMR spectra, thermogravimetric and differential thermal analyses and elemental analysis.  相似文献   

8.
Employing 1-(2-Aminoethyl) piperazine as a template, a new organically templated layered zinc phosphate-phosphite (C6H17N3)[Zn4(PO4)2(HPO3)2] has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group Cc with a=5.3272(11) Å, b=17.146(3) Å, c=22.071(4) Å, β=94.58(3)°, V=2009.5(7) Å3, Z=4, R1=0.0201 (I>2σ(I)) and wR2=0.0812 (all data). The inorganic network is based on strictly alternating ZnO4 tetrahedral units and P-centered units including PO4 tetrahedra and HPO3 pseudo-pyramids forming a double layered structure that contains columns of double six-membered rings. The diprotonated 1-(2-Aminoethyl) piperazine molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

9.
Single crystals of NaY(PO3)4 and Ag0.07Na0.93Y(PO3)4 have been synthesized by flux method. These new compounds turned out to be isostructural to NaLn(PO3)4, with Ln=La, Nd, Gd and Er [monoclinic, P21/n, a=7.1615(2) Å, b=13.0077(1) Å, c=9.7032 (3) Å, β=90.55 (1)°, V=903.86(14) Å3 and Z=4]. The structure is based upon long polyphosphate chains running along the shortest unit-cell direction and made up of PO4 tetrahedra sharing two corners, linked to yttrium and sodium polyhedra. Infrared and Raman spectra at room temperature confirms this atomic arrangement. The luminescence of silver ions was reported in metaphosphate of composition Ag0.07Na0.93Y(PO3)4. One luminescent centre was detected and assigned to single Ag+ ions.  相似文献   

10.
Hydrothermal reactions of VOSO4·3H2O, CdAc2·2H2O, NiCl2·6H2O, H3PO4, and H2O yield the first example of trimetallic phosphate materials, [Ni(H2O)4]Cd(VO)(PO4)21. The single-crystal X-ray diffraction shows that its structure consists of Cd/V/O binary metal oxide lamellas decorated by PO4 tetrahedra, which are further pillared by NiO2(H2O)4 octahedra to generate a neutral 3-D framework containing two intercrossing 8-MR channels where the coordinated water molecules protrude into. Thermal and magnetic behaviors of this material were also measured. Crystal data: CdNiVP2O13H8, orthorhombic Ibca (No.73), a=7.1307(2) Å, b=18.6248(3) Å, c=14.8046(2) Å, V=1966.17(7) Å3, Z=8.  相似文献   

11.
New complex phosphates of the general formula K2M0.5Ti1.5(PO4)3 (M=Mn, Co) have been obtained from the melting mixture of KPO3, K4P2O7, TiO2 and CoCO3·mCo(OH)2 or Mn(H2PO4)2 by means of a flux technique. The synthesized phosphates have been characterized by the single-crystal X-ray diffraction and the FTIR-spectroscopy. The compounds crystallize in the cubic system with the space group P213 and cell parameters a=9.9030(14) Å for K2Mn0.5Ti1.5(PO4)3 and a=9.8445(12) Å for K2Co0.5Ti1.5(PO4)3. Both phosphates are isostructural with the langbeinite mineral and contain four formula unit K2M0.5Ti1.5(PO4)3 per unit cell. The structure can be described using [M2(PO4)3] framework composed of two [MO6] octahedra interlinked via three [PO4] tetrahedra. The Curie-Weiss-type behavior is observed in the magnetic susceptibility.  相似文献   

12.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

13.
A new sodium hydroxygallophosphate, Na3Ga4O(OH)(H2O)(PO4)4·H2O, has been prepared by hydrothermal synthesis. Its structure has been determined from a single-crystal X-ray diffraction study. It crystallizes in the P21/c space group with the cell parameters a=9.445(2) Å, b=9.028(1) Å, c=19.209(3) Å, β=102.08(2), V=1603.4(4) Å3. Its three-dimensional framework can be described from PO4 monophosphate groups sharing their apices with original Ga4O16(OH)(H2O) tetrameric building units, which result from the assembly of one GaO4 tetrahedron, one GaO5 trigonal bipyramid and two octahedra: GaO5(OH) and GaO4(OH)(H2O). The sodium cations and one water molecule are located in tunnels running along b.  相似文献   

14.
The Mn7(HOXO3)4(XO4)2 (X=As, P) compounds have been synthesized by using hydrothermal conditions. The arsenate phase was obtained under autogeneous pressure at 170°C. However, more drastic conditions at both pressure and temperature were necessary in the attainment of the phosphate compound. The crystal structure of Mn7(HOAsO3)4(AsO4)2 was solved using single-crystal data. The unit-cell parameters are a=6.810(3) Å, b=8.239(2) Å, c=10.011(4) Å, α=104.31(2)°, β=108.94(3)°, γ=101.25(2)°. Triclinic, P-1 with Z=1. The isostructural Mn7(HOPO3)4(PO4)2 phase was characterized from X-ray powder diffraction techniques. The crystal structure of both compounds consists of zig-zag chains constructed by dimeric edge-sharing Mn2O10 octahedra linked through the MnO5 trigonal bipyramids. The three-dimensional framework is completed by the connection between isolated MnO6 entities to the dimers octahedra and trigonal bipyramids. The existence of hydrogenarsenate and hydrogenphosphate anions has been confirmed by IR and Raman spectroscopies. Magnetic measurements indicate the existence of antiferromagnetic interactions in both compounds, which are slightly stronger in the arsenate phase.  相似文献   

15.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

16.
A new layered gallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3], denoted as GaPO-CJ14, has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure was determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The compound crystallizes in the monoclinic space group P21/m (No. 11) with a=9.2103(3), b=22.0936(8), c=9.5458(4) Å, β=108.278(2)°, Z=2, R1=0.0497 and wR2=0.1122 for all data. The inorganic layer is built up by alternation of Ga-centered octahedra (GaO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2 , PO2(O)(OH) and PO(O)(OH)2) forming a 4.12-net. The sheet structure is featured by a series of structural units composed of two centrosymmetrically related [3.3.3] propellane-like chiral motifs. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds.  相似文献   

17.
A new open-framework iron (III) phosphite |C4N3H14|[Fe3(HPO3)4F2(H2O)2] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) Å, b=12.170(2) Å, c=12.159(2) Å, β=93.99(3)°, V=1900.9(7) Å3, and Z=4 with R1=0.0447, wR2=0.0958. The complex structure consists of HPO3 pseudo-tetrahedra and {Fe3O14F2} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Mössbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses.  相似文献   

18.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

19.
A new open-framework compound, [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O, (DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH22+ (C6H14N22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO7 units. [C6H14N2][(UO2)4(HPO4)2(PO4)2(H2O)]·H2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P21/n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2σ(I).  相似文献   

20.
This paper reports the syntheses and characterization of two phosphonate compounds Cd{(2-C5H4NO)CH(OH)PO3}(H2O)2 (1) and Zn{(4-C5H4NO)CH(OH)PO3} (2) based on hydroxy(2-pyridyl N-oxide)methylphosphonic and hydroxy(4-pyridyl N-oxide)methylphosphonic acids. Compound 1 has a chain structure in which dimers of edge-shared {CdO6} octahedra are linked by {CPO3} tetrahedra through corner-sharing. The pyridyl rings reside on the two sides of the inorganic chain. Compound 2 has a layer structure where the inorganic chains made up of corner-sharing {ZnO4} and {CPO3} tetrahedra are covalently connected by pyridyl N-oxide groups. Crystal data for 1: triclinic, space group , a=6.834(1) Å, b=7.539(1) Å, c=10.595(2) Å, α=84.628(3)°, β=74.975(4)°, γ=69.953(4)°. For 2: triclinic, space group , a=5.219(1) Å, b=8.808(2) Å, c=9.270(2) Å, α=105.618(5)°, β=95.179(4)°, γ=94.699(4)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号