首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel water based precursor solution using ethylenediaminetetraacetic acid (H4EDTA) as a complexant and acetic acid and ethylenediamine (EDA) as additional components to obtain CeO2 buffer layers on Ni (5%W) tapes is described in detail. The influence of complexation behavior in the formation of transparent and homogenous sols and gels by the combination of cerium acetate, acetic acid and H4EDTA has been studied. The optimal growth conditions for cerium oxide were Ar-5% H2 gas processing atmosphere, solution concentration levels of 0.2–0.4 M, a dwell time of 60 min at 900 °C and 5–30 min at 1,050 °C. X-ray diffraction, SEM, spectroscopic ellipsometry and pole figures were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained.  相似文献   

2.
In the preparation of CdO + CdTiO3 polycrystalline thin films by the sol-gel method, the optical, structural and crystalline properties, as well as the photocatalytic activity (PA) depends strongly on the sintering temperature (Ts) of the films and of the Ti/Cd ratio used in the precursor solution. In this work, CdO + CdTiO3 thin films were prepared using a Ti/Cd constant ratio in the precursor solution. The films were sintered at six different Ts in the 450-550 °C range, in an open atmosphere. The structure of the films was characterized by X-ray diffraction and the PA was evaluated by the photobleaching of methylene blue in an aqueous solution using a UV-vis spectrometer. The relative intensity of the diffraction peaks associated with CdO and CdTiO3, change with the Ts. The better photocatalytic activities were obtained for the films sintered at 490 °C and 550 °C. When the CdO was removed from the films by chemical etching the PA decreased, showing the importance of coupling both oxides.  相似文献   

3.
Crystalline cerium oxide carbonate hydrate (Ce2O(CO3)2·H2O) was grown in aqueous solutions at a low temperature of 80 °C under ambient pressure. When cerium nitrate was used as a starting material, large Ce2O(CO3)2·H2O particles were precipitated through homogeneous nucleation and subsequent fast crystal growth. In contrast, the usage of cerium chloride was found to promote the preferential precipitation of Ce2O(CO3)2·H2O on foreign substrates through heterogeneous nucleation and slow crystal growth. This phenomenon was applied to a chemical bath deposition of Ce2O(CO3)2·H2O films. Immersion of glass substrates in the solution at 80 °C for typically 24 h resulted in formation of solid films with a unique morphology like a micrometer-scale brush. It was also found that samarium could be incorporated into Ce2O(CO3)2·H2O during the crystal growth in the solutions, as evidenced by characteristic photoluminescence of Sm3+ in heating products of CeO2. These results suggest that rare-earth oxide carbonate hydrates with a variety of compositions and morphologies can be synthesized from the aqueous solutions.  相似文献   

4.
Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr2O3 were obtained by dipping pure ZnO thick films into 0.01 M aqueous solution of chromium trioxide (CrO3). The dipped films were fired at 500 °C for 30 min. Upon firing, the CrO3 would reduce to Cr2O3. Cr2O3-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr2O3 and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 °C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response (∼18 s) and fast recovery (∼42 s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.  相似文献   

5.
Nanocrystalline Nb2O5 films were prepared by an extended sol-gel method. The synthesis is based on the hydrolysis of a modified Nb-alkoxide precursor. Reaction of the modified precursor (Nb(OEt)5 + 2 2,4-pentanedione) with water in ethanol leads to a homogeneous hydrolyzed solution, which is stable against precipitation of niobium oxide after evaporation of the ethanol and in the whole pH-range investigated (1–10). Autoclaving leads to amorphous gels, from which homogeneous nanocrystalline niobium oxide films of up to 15 m can be made. During annealing crystalline phases are first observed above 500°C with fully crystalline films of orthorhombic T-phase Nb2O5 attained at 600°C. The microstructural, crystallographic, optical and photoelectrical properties of the films were characterized by means of SEM, XRD, UV-VIS spectroscopy and surface photovoltage spectroscopy, respectively.  相似文献   

6.
Formation of nano-sized Y2O3-doped CeO2 (YCO) was observed in the chemical reaction between proton conducting Y2O3-doped BaCeO3 (BCY) and CO2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li2ZrO3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO2 (a=5.410 (1) Å) structure and BaCO3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO2 reported in the literature.  相似文献   

7.
Porous ZnWO4 films have been fabricated on Indium-tin oxide (ITO) glass and its photoelectrochemical properties and high photocatalytic activities towards degradation of rhodamine B (RhB) has been investigated. Using amorphous heteronuclear complex as precursor and with the addition of polyethylene glycol (PEG, molecular weight=400), the porous ZnWO4 films have been achieved at the temperature of 500 °C via dip-coating method. It is composed of approximately 70 nm-sized particles and exhibits substantial porosity. The textures and porosity of ZnWO4 films are dependent on preparation factors, such as the ratio of precursor/PEG and the annealing conditions. The formation mechanism of porous ZnWO4 films was proposed. The porous ZnWO4 films exhibited high photocatalytic activities towards degrading RhB. The top of valence band and the bottom of the conduction band was estimated to be −0.56 and 3.45 eV (vs. saturated calomel electrode (SCE)), respectively.  相似文献   

8.
Nanosized-Ta2O5 powder photocatalyst was successfully synthesized by using sol-gel method via TaCl5 butanol solution as a precursor. Ta2O5 species can be formed under 500 °C via the decomposition of the precursor. The crystalline phase of Ta2O5 powder photocatalyst can be obtained after being calcined above 600 °C for 4 h. The crystal size and particle size of Ta2O5 powder photocatalyst was about 50 nm. A good photocatalytic performance for the degradation of gaseous formaldehyde was obtained for the nanosized-Ta2O5 powder. The Ta2O5 powder formed at 700 °C for 4 h and at 650 °C for 12 h showed the best performance. The calcination temperature and time play an important role in the crystallization and photocatalytical performance of nanosized-Ta2O5 powder.  相似文献   

9.
Porous complex oxide films consisting of preferentially orientated orthorhombic phase of InVO4 have been prepared using a novel simple method by pyrolysis of amorphous complex precursor. The formation and controlling of porous InVO4 films can be easily obtained by modifying the calcination temperature. The pure orthorhombic InVO4 phase can be obtained at a relatively lower temperature (500 °C), and the films are preferential orientation of the (200) face parallel to the substrate. The phase separation mechanism was suggested for the formation of porous films. Under visible light irradiation (λ>400 nm), porous InVO4 films have shown the photocatalytic activity for photodegradation of gaseous formaldehyde, and can generate photocurrent. The electrochemical properties of the films with different crystal structure and pore structure were also investigated.  相似文献   

10.
CeO2-γ-Al2O3 mixed oxides have been prepared by using both co-precipitation and impregnation methods followed by calcination at 650°C and investigated by 27Al MAS NMR, powder X-ray diffraction and temperature programmed reduction techniques to understand the nature of chemical interaction existing between CeO2 and γ-Al2O3. The 27Al NMR spectra of CeO2-containing samples showed an additional peak placed at 40 ppm along with the two peaks at 68 and 6 ppm which originate from the tetrahedrally and octahedrally coordinated Al3+ ions present in γ-Al2O3. As the concentration of CeO2 in the mixed oxide increased, the intensity of the 40 ppm peak increased and this was the prominent peak for CeO2-rich mixed oxide samples. The origin of this 40 ppm peak is discussed and it is inferred that this peak is due to Al3+ ions, which are present in CeO2 lattice, forming a solid solution.  相似文献   

11.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

12.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   

13.
Syntheses and characterizations of sol–gel precursors of Sr2CeO4 were carried out. Each molecular precursor, [Sr2Ce(OCH2CH2OCH3)8] (1), [Sr2Ce(OiPr)8] (2) and [Sr2Ce2(OiPr)12(iPrOH)4] (3) was prepared from mixtures of Sr complexes and cerium(IV) alkoxides. The molecular structure of 3 showed that [CeO6] octahedra are connected with distorted [SrO6] octahedra by sharing edges with oxo bridges. X-ray powder diffraction patterns and spectrofluorometry were used to determine the evolution of structure from the precursor molecules to the luminescent oxides. The luminescent strontium cerium oxides were derived at relatively mild reaction conditions (700 °C for 1 h), and complete conversion was observed at 1000 °C for 1 h from these precursors. Comparing the spectra of the oxides derived from 2 and 3, the emission intensity of the oxide derived from 2 is much stronger.  相似文献   

14.
An aqueous solution-gel route is developed for the preparation of TiO2. In this report, we study an aqueous citratoperoxo-Ti(IV)-precursor at pH 2.0, which is compatible with polyvinyl alcohol (PVA) and therefore can be applied for the preparation of a thick mesoporous TiO2 film.With regard to deposition of films, it is important to gain insight in the behaviour of the precursor during thermal treatment. Therefore, the thermal decomposition mechanism of a citratoperoxo-Ti(IV)-gel and a PVA modified citratoperoxo-Ti(IV)-gel is studied. Weight losses and evolved gasses are characterized by TGA-MS (5 °C min−1), while gel structure and changes in the solid upon heating are studied by means of FTIR. For both gels, decomposition in dry air can be divided into five regions. After drying of the samples in the first region (∼100 °C), decomposition of the organic matter not coordinated to the metal ions occurs (∼200 °C). The third region (∼310 °C) involves the decomposition of citrato ligands. Finally, the residual organic matter is combusted in the last two regions. Only in dry air it is possible to fully remove the organic matrix in both gels at temperatures below 600 °C.It is also proven that the citratoperoxo-Ti(IV)-complexes, seen at pH 7.0, exist in the precursor gel already at pH 2.0.  相似文献   

15.
Mesoporous TiO2-CeO2 nanopowders responding to visible wavelength were synthesized by using a surfactant assisted sol-gel technique. They were obtained using metal alkoxide precursors modified with acetylacetone (ACA) and laurylamine hydrochloride (LAHC) as surfactant. The samples were characterized by XRD, nitrogen adsorption isotherm, SEM, TEM, and selected area electron diffraction (SAED), respectively. The 95 mol% TiO2-5 mol% CeO2 system yielded single anatase phase, however, further addition of the CeO2 formed cubic CeO2 structure while anatase TiO2 decreased. Additions of 5 and 10 mol% CeO2 increased the surface area, but those of 25, 50, and 75 mol% CeO2 did not affect it very much. By using this mixed metal oxides system, TiO2 can be modified to respond to the visible wavelength. The mixed metal oxides had catalytic activity (evaluating the formation rate of I3) about 2-3 times higher than pure CeO2, while nanosize anatase type TiO2 materials had no catalytic activity under visible light. The catalytic activity was almost proportional to the specific surface area. The formation rate of I3 was much improved by changing the calcination temperature and calcination period. Highest catalytic activity in this study was obtained for the 50 mol% TiO2-50 mol% CeO2 nanopowders calcined at 250 °C for 24 h.  相似文献   

16.
The present study reports on a novel barium acetato-propionate complex, obtained by the reaction of barium acetate with propionic acid, used as an oxide precursor with applications in superconducting thin films deposition. The molecular structure has been determined by X-ray diffraction on single crystals and demonstrated to be [Ba7(CH3CH2COO)10(CH3COO)4·5H2O]. The barium acetato-propionate is a three-dimensional channel-type polymer. The thermal decomposition of the barium precursor has been studied by simultaneous differential thermal analysis-thermogravimetry-mass spectrometry (DTA-TG-MS) in air at a heating rate of 10 °C/min. Based on these analyses, infrared spectroscopy was further used to characterize the precursor solution by the step-wise addition of the reagents. The X-ray diffraction on the precursor powder at different temperatures was performed.  相似文献   

17.
In this paper non-stoichiometric tungsten oxide thin films have been successfully prepared by direct UV irradiation of bis-β-diketonate dioxotungsten(VI) precursor complexes spin-coated Si(1 0 0) substrates. Photodeposited films were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the surface morphology examined by Atomic Force Microscopy (AFM). The results of XRD analysis showed that the as-photodeposited WO3−x films are amorphous and have a rougher surface than thermally treated films. Post-annealing of the films in air at 500 °C transforms the sub-oxides to a monoclinic WO3 phase.  相似文献   

18.
CsAlSi5O12 crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs0.85Al0.85Si5.15O12 composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 °C up to 700 °C, show a significant decrease in expansion above 500 °C. At 500 °C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO4 rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 °C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between −270 and 300 °C and unpolarized spectra between room temperature and 1000 °C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition.  相似文献   

19.
Optically selective thin films of CoAl2O4 with a spinel structure were produced for an automotive lamps application by the sol-gel process using aluminum sec-butoxide, ethylacetoacetate chelating agent and cobalt nitrate hexahydrate. The use of two metal-oxide precursors is advantageous over the single bimetallic alkoxide precursor (aluminum cobalt isopropoxide), because it allows us to vary the Co/Al ratio in the precursor solution. We found that the Co/Al ratio should not exceed 0.3 if we are to achieve films with the characteristic blue colour at 700°C. The structural characteristics of the oxide powders were determined from infrared (IR) spectra and X-ray diffraction (XRD) analysis, while the optical properties of the films were investigated with UV-VIS spectroscopy.  相似文献   

20.
A three-dimensionally ordered macroporous (3DOM) ternary oxide, CsAlTiO4, with a framework related to ‘stuffed-tridymite’ has been synthesized at temperatures 500-700 °C using a sol-gel precursor solution and templating with polystyrene spheres. The 3DOM material displayed pore diameters of 0.5-0.8 μm with the walls composed of anhedral and acicular CsAlTiO4 crystals whose dimensions ranged from 16 to 25 nm. Microanalysis confirmed near-stoichiometric proportions (1:1:1) of Cs, Al and Ti. The effect of sintering temperature on the macroporous structure and on the CsAlTiO4 walls was studied. As the sintering temperature increased from 500 to 600 °C the unit cell parameters varied through dilation (a and b) and contraction (c-axis), followed by a reversal of these trends from 700 to 900 °C. This behaviour in non-equilibrated CsAlTiO4 can be attributed to distortion of the (Al, Ti)O4 tetrahedral framework, however at the highest temperature the cell constants stabilized close to those reported for single crystal CsAlTiO4. X-ray amorphous content was significant in all materials varying from 73 wt% after 500oC and reducing to 44 wt% at 900 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号