首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical type solutions are obtained for the free vibration frequencies and mode shapes of thin corner-supported rectangular plates with symmetrically distributed reinforcing beams, or strips, attached to the plate edges. The method of superposition is employed. Equations governing reactions at plate-beam interfaces are developed in dimensionless form. The approach is comprehensive in that both lateral and rotational stiffness, and inertia, of the beam are incorporated into the analysis. For illustrative purposes computed eigenvalues and mode shapes are presented for two plate-beam systems of realistic geometries. It is shown that the method is easily extended to cover the case where the edge beams do not have a symmetrical distribution. This appears to be the first comprehensive analytical study of this problem of industrial interest.  相似文献   

2.
In this paper a highly accurate mathematical technique for establishing the free vibration eigenvalues and mode shapes of rectangular plates with symmetrically distributed point supports is introduced. The method is based on the principle of superposition and it constitutes, in essence, an extension of a technique described earlier for the analysis of completely free plates. Eigenvalues, covering numerous modes and aspect ratios, are tabulated for corner supported rectangular plates. It is seen that with some modifications the method is equally applicable to problems where the point supports are not symmetrically distributed.  相似文献   

3.
4.
A numerical method developed by the author has been used as a basis for determining natural frequencies of rectangular plates possessing different degrees of elastic restraints along the edges. The basic functions satisfying the boundary conditions along two opposite edges for such cases have been derived. Comparison of results with others that are available indicates excellent accuracy. Many new results have been presented.  相似文献   

5.
Vibration characteristics of rectangular plates continuous over full range line supports or partial line supports have been studied by using a discrete method. Concentrated loads with Heaviside unit functions and Dirac delta functions are used to simulate the line supports. The fundamental differential equations are established for the bending problem of the continuous plate. By transforming these differential equations into integral equations and using the trapezoidal rule of the approximate numerical integration, the solution of these equations is obtained. Green function which is the solution of deflection of the bending problem of plate is used to obtain the characteristic equation of the free vibration. The effects of the line support, the variable thickness and aspect ratio on the frequencies and mode shapes are considered. By comparing the numerical results obtained by the present method with those previously published, the efficiency and accuracy of the present method are investigated.  相似文献   

6.
7.
This note presents vibration analysis of isotropic rectangular plates with free edges by the Rayleigh-Ritz method with B-spline functions. To show the accuracy of the present method, the results are compared with existing results based on other numerical methods and found to be in good agreement. Accurate frequencies of rectangular plates are analyzed for different aspect ratios and boundary conditions. The effects of Poisson's ratio on natural frequencies of square plates with free edges are also investigated.  相似文献   

8.
Frequencies of free vibration of rectangular plates of arbitrary thickness, with different support conditions, are calculated by using the Method of Initial Functions (MIF), proposed by Vlasov. Sixth and fourth order MIF theories are used for the solution. Numerical results are presented for three square plates for three thickness ratios. The support conditions considered are (i) three sides simply supported and one side clamped, (ii) two opposite sides simply supported and the other two sides clamped and (iii) all sides clamped. It is found that the results produced by the MIF method are in fair agreement with those obtained by using other methods. The classical theory gives overestimates of the frequencies and the departures from the MIF results increase for higher modes and larger thickness ratios.  相似文献   

9.
10.
11.
Free vibration of thick rectangular plates is investigated by using the “method of initial functions” proposed by Vlasov. The governing equations are derived from the three-dimensional elastodynamic equations. They are obtained in the form of series and theories of any desired order can be constructed by deleting higher terms in the infinite order differential equations. The numerical results are compared with those of classical, Mindlin, and Lee and Reismann solutions.  相似文献   

12.
While the subject of free vibration analysis of the completely free rectangular plate has a history which goes back nearly two centuries it remains a fact that most theoretical solutions to this classical problem are considered to be at best approximate in nature. This is because of the difficulties which have been encountered in trying to obtain solutions which satisfy the free edge conditions as well as the governing differential equation. In a new approach to this problem, by using the method of superposition, it is shown that solutions which satisfy identically the differential equation and which satisfy the boundary conditions with any desired degree of accuracy are obtained. Eigenvalues of four digit accuracy are provided for a wide range of plate aspect ratios and modal shapes. Exact delineation is made between the three families of modes which are characteristic of this plate vibration problem. Accurate modal shapes are provided for the response of completely free square plates.  相似文献   

13.
14.
15.
This paper presents three-dimensional free vibration analysis of isotropic rectangular plates with any thicknesses and arbitrary boundary conditions using the B-spline Ritz method based on the theory of elasticity. The proposed method is formulated by the Ritz procedure with a triplicate series of B-spline functions as amplitude displacement components. The geometric boundary conditions are numerically satisfied by the method of artificial spring. To demonstrate the convergence and accuracy of the present method, several examples with various boundary conditions are solved, and the results are compared with other published solutions by exact and other numerical methods based on the theory of elasticity and various plate theories. Rapid, stable convergences as well as high accuracy are obtained by the present method. The effects of geometric parameters on the vibrational behavior of cantilevered rectangular plates are also investigated. The results reported here may serve as benchmark data for finite element solutions and future developments in numerical methods.  相似文献   

16.
A comprehensive analytical technique is developed for the free vibration analysis of rectangular plates with discontinuities along the boundaries. For illustrative purposes a solution is obtained for plates with edges partially clamped and partially simply supported and plates with edges partially and partially simply supported. A vast array of first mode eigenvalues is provided for these families of plates. Solutions to the equations are obtained by exploiting a mathematical technique described by the author during an earlier publication. It is shown that eigenvalue matrices are easily generated for a wide range of plates with discontinuities in boundary conditions.  相似文献   

17.
The Rayleigh-Ritz method is used to determined natural frequencies in transverse vibration of rectangular plates with elastically restrained edges. By treating an elastically restrained edge as intermediate between an appropriate pair of classical boundary conditions and using the corresponding vibration mode shapes of beams with classical boundary conditions as assumed functions, a relatively small number of functions is required; consequently only a modest quantity of computation is necessary. The good accuracy of the method is demonstrated by solving test problems. The method can be applied to a wide range of elastic restraint conditions, any aspect ratio and for higher modes in addition to the fundamental. The usefulness and accuracy of existing simplified approaches to the problem are assessed. The effect of in-plane forces on the natural frequencies and the determination of critical loads for plates with these restraint conditions are considered also.  相似文献   

18.
The authors have found the above techniques to constitute a powerful means for solving rectangular plate problems. At the time of writing, solutions for plates with two adjacent simply supported edges and two adjacent free edges have been obtained. The first 20 eigen-values for plates with all edges clamped have also been determined for a full range of aspect ratio and they are shown to be accurate to within less than one half of one percent. It will be appreciated that solutions for any combination of clamped-simply supported edge conditions can easily be obtained from the all-clamped solution by simply deleting appropriate solutions from the all-clamped combination. In Figure 2 contour lines for first mode vibration of a plate with two adjacent clamped and two adjacent simply supported edges is presented. The higher density of the contour lines along the simply supported edges will be noted.The method of superposition is currently being used by the authors to good advantage to obtain solutions of any desired degree of accuracy to all of the problems discussed. It is found to be easily utilized and unlike more complicated methods is readily comprehensible to the practicing engineer. Eigenvalues for all modes, aspect ratios, and boundary conditions are readily obtained. Modal shapes are expressed in terms of familiar analytic functions. Results of these studies will be made available in future publications.  相似文献   

19.
Results for the natural frequencies of annular sector plates possessing different degrees of elastic restraint along the edges are presented. The analysis is based on a numerical method developed by the author. The functions in the circumferential direction satisfying the boundary conditions along the radial edges, which are required in the analysis, are indicated. To the best of the author's knowledge, no previous results exist for such plates.  相似文献   

20.
Free vibration analysis of rectangular Mindlin plates is carried out via the superposition method and is shown to produce accurate results. The analytical method proposed by the authors in this paper solves the problem for the case where the plate has simultaneous elastic edge and internal supports. The conditions of edge supports are uniform lateral, rotational and torsional elastic supports, whereas, the internal supports are column supports with finite area. Compatibility between the plate and column is achieved by requiring that the column and plate rotations be equal. The results presented herein are verified through comparison with results presented by others. Numerical examples presented in this study confirm that the analytical method is able to model the property of the elastic edge supports while simultaneously considering the effect of column restraint, an effect which increases with column number and area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号