首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

2.
Stereoselective total syntheses of aggregation pheromones (+)-exo-brevicomin (9a), (−)-exo-brevicomin (9b), (+)-endo-brevicomin (9c), (−)-endo-brevicomin (9d) and styryllactones (+)-cardiobutanolide (14a), (−)-cardiobutanolide (14b), and (+)-goniofufurone (19a) were achieved in good yields from enantiomerically pure highly functionalized furanoid glycal building blocks (1a-d) involving similar synthetic strategies, thus making these furanoid glycals highly useful building blocks in diversity-oriented synthesis (DOS).  相似文献   

3.
Sesquiterpenoids (+)-trans-dracuncuflifoliol (1) and (+)-4-hydroxyoppositan-7-one (2) were prepared stereoselectively from enantiomerically pure (7aR)-7a-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one ((−)-6), whose synthesis was described herein. Conjugate addition of the organocopper (I) reagent 10 to (−)-6, followed by epimerization of the ring junction, generated 3 of the 4 contiguous chiral centers of both natural products.  相似文献   

4.
Three novel 1D Cu(I) coordination polymers [Cu4X4(pprd)2]n (X = Cl(1), Br(2) and I(3); pprd = 4-(2-pyridyl)pyrimidine) were systematically synthesized by Cu(I) halides and the pprd ligand, and they have been characterized by X-ray, IR, and TG-DTA analyses. The molecular structure of complex 1 essentially resembles to that of complex 2. In complexes 1 and 2, four Cu(I) atoms are bridged by four Cl or Br anions to form an eight-membered Cu4X4 framework in the twist-chair form. Furthermore, the Cu4X4 frameworks are coordinated by the chelate and bridging sites of two pprd ligands to form a unique 1D two-stepped Cu(I) coordination polymer, in which two stairs are formed by the Cu4X4 core and two heteroaromatic planes of pprd. In the crystal packing structures, it is interesting that two heteroaromatic planes of pprd are stacking along the b-axis for complex 1 and the a-axis for complex 2. In contrast, four Cu(I) atoms in complex 3 are bridged by four I atoms to form a Cu4I4 stepped cubane tetramer. Additionally, the Cu4I4 stepped cubane cores are linked by the chelate and bridging sites of two pprd ligands to form an infinite 1D zigzag-chain Cu(I) coordination polymer. The thermal decomposition behaviors for Cu(I)–X/pprd complexes 1, 2 and 3 were determined by thermogravimetric analysis (TG-DTA). Although the thermal decomposition behaviors of complex 1 were unidentified, those of complexes 2 and 3 were assigned. The mass loss at the first stage of thermal decomposition for polymeric [Cu4X4(pprd)2]n was identical to the formation of oligomeric [Cu4X4(pprd)] by the elimination of one pprd molecule. The mass loss at the next stage was decided to the formation of Cu4X4 by the elimination of another pprd molecule.  相似文献   

5.
Reactions of [Ti(OPri)4] with various oximes, in anhydrous refluxing benzene yielded complexes of the type [Ti{OPri}4−n{L}n], where, n = 1-4 and LH = (CH3)2CNOH (1-4), C9H16CNOH (5-8) and C9H18CNOH (9-12). The compounds were characterized by elemental analyses, molecular weight measurements, FAB-mass, FT-IR and NMR (1H, 13C{1H}) spectral studies. The FAB-mass spectra of mono- (1), and di- (2), (6), (10) substituted products indicate their dimeric nature and that of tri- (3) and tetra- (4), (8) substituted derivatives suggest their monomeric nature. Crystal and molecular structure of [Ti{ONC10H16}4·2CH2Cl2] (8A) suggests that the oximato ligands bind the metal in a dihapto η2-(N, O) manner, leading to the formation of an eight coordinated species. Thermogravimetric curves of (3), (6) and (10) exhibit multi-step decomposition with the formation of TiO2 as the final product in each case, at 900 °C. Low temperature (∼600 °C) sol-gel transformations of (2), (3), (4), (6), (7) and (8) yielded nano-sized titania (a), (b), (c), (d), (e) and (f), respectively. Formation of anatase phase in all the titania samples was confirmed by powder XRD patterns, FT-IR and Raman spectroscopy. SEM images of (a), (b), (c), (d), (e) and (f) exhibit formation of nano-grains with agglomer like surface morphologies. Compositions of all the titania samples were investigated by EDX analyses. The absorption spectra of the two representative samples, (a) and (f) indicate an energy band gap of 3.17 eV and 3.75 eV, respectively.  相似文献   

6.
A podand containing urea units (L) was found to form interlocked structures with 2,5-dihexylamide imidazolium salts (3·X), 2,5-dihexyl imidazolium salts (4·X), and 2,5-dihexyl benzoimidazolium salts (5·X), where X=Cl, Br, and PF6 using anions as templates. The binding ability of L and guest molecules was evaluated by 1H NMR titrations in CDCl3. It was found that L could form complexes with guest molecules in the following order, 3·X > 5·X > 4·X. Stabilities of the complexes also depended on shape of the templated anions: Cl>Br?PF6. Hydrogen bonding and π-π stacking interactions played an important role in the self-assembling of these interlocked molecules.  相似文献   

7.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

8.
An array of 2D isoreticular layers, viz. [Zn(atrz)X] (1·X; X=Cl, Br, I; atrz=3-amino-1,2,4-triazole anion), [Zn4(atrz)4(SCN)4·H2O] (1·SCN·H2O) and [Zn(trz)X] (2·X; X=Cl, Br, I; trz=1,2,4-triazole anion), have been hydrothermally synthesized and structurally characterized. Compounds 1·X and 1·SCN·H2O are constructed from binuclear planar Zn2(atrz)2 subunits and exhibit (4,4) topological network when the subunits are simplified as four-connected nodes. Based on changing the terminal counteranions X (X=Cl, Br, I, SCN), the average interlayer separations of 1·X and 1·SCN·H2O are enlarged, which equal to 5.851, 6.153, 6.651 and 8.292 Å, respectively. As a result, H2O molecules reside in the spaces between two adjacent layers of 1·SCN·H2O. 2 and 1 are the isomorphous structures. In common with 1, the interlayer separations of 2·X are widened with increasing the ion radius. Solid-state luminescence properties and thermogravimetric analyses of 1 and 2 were investigated, respectively.  相似文献   

9.
Two types of lanthanide selenidoantimonates [Ln(en)4(SbSe4)] (Ln=Ce(1a), Pr(1b)) and [Ln(en)4]SbSe4·0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl3, Sb and Se with the stoichiometric ratio in en solvent at 140 °C. The four-en coordinated lanthanide complex cation [Ln(en)4]3+ formed in situ balances the charge of SbSe43− anion. In compounds 1a and 1b, the SbSe43− anion act as a monodentate ligand to coordinate complex [Ln(en)4]3+ and the neutral compound [Ln(en)4(SbSe4)] is formed. The Ln3+ ion has a nine-coordinated environment involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en)4]3+, in which the Ln3+ ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively.  相似文献   

10.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

11.
EPR simulation method together with pH-potentiometry combined with UV-Vis spectrophotometry were used for the study of the ternary system 4-fuorosalicylic acid (HA)-N,N-diethylnicotinamide (B)-copper(II) in aqueous solution. The N,N-diethylnicotinamide ligand is a weak donor, its mixed-ligand complexes with 4-fluorosalicylate anions are more favoured. The number of coordinated N,N-diethylnicotinamide molecules increases with decreasing temperature: up to four ones were detected in the coordination sphere of copper(II) in frozen solutions. The formation of [CuH−1AB2] and [CuH−1A] was detected by all methods at neutral pH. At lower pH values, [CuA2B2] and [CuB] become dominant, and this fact is in good agreement with [CuA2B2(H2O)2] crystals obtained from similar solutions. The structural unit of the [CuA2B2(H2O)2] complex consists of a copper(II) ion, which is monodentately coordinated by a pair of 4-fluorosalicylate anions and by a pair of N,N-diethylnicotinamide in trans positions in the basal plane, and by two water molecules in the axial positions of a tetragonal bipyramid.  相似文献   

12.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

13.
While prenylation of (−)-Witkop's pyrroloindole (2), secured from l-tryptophan under standard N-alkylation conditions, led to a ca. 1:1 diastereoisomeric mixture of two C3a-alkylated indolenines 3 and 4, use of phase-transfer conditions altered this to ca. 1:2. Reduction followed by N-prenylation of the resulting secondary amines gave C,N-dialkylated products. The derived separable diastereoisomeric (−)- and (+)-Barton esters 19a and 19b were then converted into (−)-debromoflustramine B and (+)-ent-debromoflustramine B, respectively. A novel reaction involving oxygen and the carbanion derived from Barton ester 19b led to (+)-ent-debromoflustramide B. Treatment of N8-prenylated Witkop's pyrroloindole 5 with Lewis acid (BF3·Et2O) uncovered a new clean intramolecular cyclisation involving the prenyl unit.  相似文献   

14.
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with CuII acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L12(OAc)2] (1), [Cu2L22(OAc)2] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL4 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dimers and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L32(OAc)6]n (3) and [Cu4L42(OAc)6]n (4), formed by a very rare μ3 bridging mode of the acetate ion. All four complexes (14) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = −JS1S2 has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2–300 K reveal a very weak antiferromagnetic coupling for both complexes (J = −0.56 and −1.19 cm−1 for 1 and 2, respectively).  相似文献   

15.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

16.
Three 3D compounds based on octamolybdate clusters and various CuI/CuII-bis(triazole) motifs, [CuI2btb][β-Mo8O26]0.5 (1), [CuI2btpe][β-Mo8O26]0.5 (2), and [CuII(btpe)2][β-Mo8O26]0.5 (3) [btb=1,4-bis(1,2,4-triazol-1-yl)butane, btpe=1,5-bis(1,2,4-triazol-1-yl)pentane], were isolated via tuning flexible ligand spacer length and metal coordination preferences. In 1, the copper(I)-btb motif is a one-dimensional (1D) chain which is further linked by hexadentate β-[Mo8O26]4− clusters via coordinating to CuI cations giving a 3D structure. In 2, the copper(I)-btpe motif exhibits a “stairs”-like [CuI2btpe]2+ sheet, and the tetradentate β-[Mo8O26]4− clusters interact with two neighboring [CuI2btpe]2+ sheets constructing a 3D framework. In 3, the copper(II)-btpe motif possesses a novel (2D→3D) interdigitated structure, which is further connected by the tetradentate β-[Mo8O26]4− clusters forming a 3D framework. The thermal stability and luminescent properties of 1-3 are investigated in the solid state.  相似文献   

17.
The complexes of the type (ArCH2)2SnO were catalytic-oxygenated by Ag+ and yielded mixed-ligand organotin(IV) complexes (ArCH2)(2-C5H4NCO2)2(ArCOO)tin(IV) (Ar = C6H5 (1), 2-ClC6H4 (2), 2-CNC6H4 (3), 4-ClC6H4 (4), 4-CNC6H4 (5), 2-FC6H4 (6)). The complexes 1-6 are characterized by elemental analyses, IR and NMR (1H, 13C, 119Sn) spectroscopies. Single X-ray crystal structure analysis has been determined, which reveals that the center tin atom of complex 2 is seven-coordinated geometry.  相似文献   

18.
Three new cyclopentapeptides, versicoloritides A-C (1-3), a new orcinol tetramer, tetraorcinol A (4), and two new lactones, versicolactones A and B (5 and 6) together with three known metabolites, diorcinol, glyantrypine, and cordyol C were isolated from the fermentation broth of the coral-associated fungus Aspergillus versicolor LCJ-5-4. Their structures were elucidated by spectroscopic and chemical methods. The new compounds 1-4 were evaluated for their radical-scavenging activity and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Enterobacter aerogenes, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans and cytotoxicity against P388 and Hela cell lines. Compound 4 showed weak radical-scavenging activity against the DPPH radical with an IC50 value of 67 μM.  相似文献   

19.
Shin-ichi Naya 《Tetrahedron》2004,60(2):459-467
Synthesis of 6,9-disubstituted cyclohepta[b]pyrimido[5,4-d]pyrrole-8(6H),10(9H)-diones 7a-g was accomplished by ring opening and ring closure sequences of 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8,10(9H)-dione derivatives induced by several amines. Furthermore, alternative synthetic methodology for compounds 7a-e was also accomplished by single-step reaction of 2-chlorotropone with 6-aminouracil derivatives under mild conditions. X-ray crystal analysis of 7a was carried out to clarify the structural characteristics. The properties of 7a-e were studied by the UV-vis spectra and reduction potentials (−1.24 to −1.39 V vs Ag/AgNO3). Novel photo-induced oxidation reaction of 7a-d toward some amines under aerobic conditions was carried out to give the corresponding imines in more than 100% yield [based on compounds 7a-d], suggesting the oxidation reaction occurs in an autorecycling process.  相似文献   

20.
The reaction of trichlorosilane (1a) at 250 °C with cycloalkenes, such as cyclopentene (2a), cyclohexene (2b), cycloheptene (2c), and cyclooctene (2d), gave cycloalkyltrichlorosilanes [CnH2n−1SiCl3: n = 5 (3a), 6 (3b), 7 (3c), 8 (3d)] within 6 h in excellent yields (97-98%), but the similar reactions using methyldichlorosilane (1b) instead of 1a required a longer reaction time of 40 h and afforded cycloalkyl(methyl)dichlorosilanes [CnH2n−1SiMeCl2: n = 5 (3e), 6 (3f), 7 (3g), 8 (3h)] in 88-92% yields with 4-8% recovery of reactant 2. In large (2, 0.29 mol)-scale preparations, the reactions of 2a and 2b with 1a (0.58 mol) under the same condition gave 3a and 3b in 95% and 94% isolated yields, respectively. The relative reactivity of four hydrosilanes [HSiCl3−mMem: m = 0-3] in the reaction with 2a indicates that as the number of chlorine-substituent(s) on the silicon increases the rate of the reaction decreases in the following order: n = 3 > 2 > 1 ? 0. In the reaction with 1a, the relative reactivity of four cycloalkenes (ring size = 5-8) decreases in the following order: 2d > 2a > 2c > 2b. Meanwhile linear alkenes like 1-hexene undergo two reactions of self-isomerization and hydrosilylation with hydrosilane to give a mixture of the three isomers (1-, 2-, and 3-silylated hexanes). In this reaction, the reactivity of the terminal 1-hexene is higher than the internal 2- and 3-hexene. The redistribution of hydrosilane 1 and the polymerization of olefin 2 occurred rarely under the thermal reaction condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号