共查询到20条相似文献,搜索用时 0 毫秒
1.
To improve the broadband transduction capabilities of vibratory energy harvesters (VEHs) under random and non-stationary excitations, many researchers have resorted to purposefully introducing nonlinearities into the restoring force of the harvester. While performing this task, it is often very challenging to maintain a perfectly symmetric restoring force which yields a VEH with an asymmetric potential energy function. This paper investigates the influence of potential function asymmetries on the performance of nonlinear VEHs under white noise inputs. To that end, a quadratic nonlinearity is introduced into the restoring force and its influence on the mean output power of the harvester for mono- and bi-stable quartic potentials is investigated. It is shown that, for VEHs with a mono-stable quartic potential function, the mean output power increases with the degree of potential function asymmetry. On the other hand, for energy harvesters with a bi-stable quartic potential function, asymmetries in the restoring force appear to worsen performance especially for low to moderate noise intensities. When the noise intensity becomes sufficiently large, the influence of the potential function?s asymmetry on the mean power diminishes. Results also reveal that a VEH with a symmetric bi-stable quartic potential function produces higher mean power levels than the one with the most asymmetric mono-stable potential. As such, it is concluded that a VEH with a symmetric bi-stable potential is most desirable to improve performance under white noise. 相似文献
2.
M.V. Fedorov 《Physics letters. A》1977,61(4):224-226
The vibrational-rotational quasienergy spectra and the excitation probabilities of a diatomic molecule are found, arising under the action of a strong resonance infrared radiation field. 相似文献
3.
《Nuclear Physics A》1999,660(3):255-266
In this work we discuss possible definitions of the mean value of the energy for a resonant (Gamow) state. The mathematical and physical aspects of the formalism are reviewed. The concept of rigged Hilbert space is used as a supportive tool in dealing with Gamow-resonances. 相似文献
4.
The normal form is proposed as a tool to analyze the performance and reliability of galloping-based piezoaeroelastic energy harvesters. Two different harvesting systems are considered. The first system consists of a tip mass prismatic structure (isosceles 30° or square cross-section geometry) attached to a multilayered cantilever beam. The only source of nonlinearity in this system is the aerodynamic nonlinearity. The second system consists of an equilateral triangle cross-section bar attached to two cantilever beams. This system is designed to have structural and aerodynamic nonlinearities. The coupled governing equations for the structure’s transverse displacement and the generated voltage are derived and analyzed for both systems. The effects of the electrical load resistance and the type of harvester on the onset speed of galloping are quantified. The results show that the onset speed of galloping is strongly affected by the load resistance for both types of harvesters. The normal form of the dynamic system near the onset of galloping (Hopf bifurcation) is then derived. Based on the nonlinear normal form, it is demonstrated that smaller levels of generated voltage or power are obtained for higher absolute values of the effective nonlinearity. For the first harvesting system, the results show a supercritical Hopf bifurcation for both isosceles 30° or square cross-section geometries. The nonlinear normal form shows that the isosceles triangle section (30°) is more efficient than the square section. For the second harvesting system, the normal form is used to identify the values of the nonlinear torsional spring which changes the harvester’s instability. It is demonstrated that this critical value of the nonlinear torsional spring depends strongly on the load resistance. 相似文献
5.
We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming's fourth-order predictor–corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds. 相似文献
6.
In this paper we report about penetration depth measurements performed on strong coupling Pb–Bi alloys. The change of penetration depth with temperature is obtained from the frequency shift of a superconducting resonant cavity. The experimental results are compared with the low frequency electromagnetic response kernel calculated from the strong coupling theory and the scaled weak coupling theory respectively. A very good agreement between experiment and strong coupling theory is observed. The fit of the scaled weak coupling theory to the measured change of penetration depth yields values of the superconducting energy gap, which agree with the corresponding results of tunneling measurements. 相似文献
7.
在谐振腔设计过程中, 谐振腔的品质因数以及谐振频率都是需要考虑的关键因素. 传统的方法是通过减小谐振腔的尺寸或者利用高次模来提高谐振腔的谐振频率, 但是由于两种方法都有其局限性, 导致设计结果并不理想. 通过理论计算与模拟仿真相结合的方法, 对影响谐振腔谐振频率的因素进行分析, 得出了填充介质的材料属性与谐振腔谐振频率的关系. 理论计算显示: 当用“左手介质”作为谐振腔的填充物质时, 可以在不改变谐振腔尺寸的基础上提高谐振频率. 高频结构仿真器(high frequency structure simulator)的仿真数据也证明了以上结果, 从而得出谐振腔的谐振频率可以不受谐振腔尺寸的限制. 相较于传统理论而言, 研究结论有进一步的发展, 为探索和设计新颖的谐振腔提供了理论依据. 相似文献
8.
将电子注视为等离子体柱,从填充等离子体柱的谐振腔的物理模型出发,推导了圆柱腔填充中心电子注时TM0m0模式的特征方程,并重点分析了填充电子注的圆柱腔中TM010模式和TM020模式的谐振频率和电磁场分布随等离子频率的变化情况。研究结果表明,随着电子注的等离子体频率不断增大,谐振频率也不断增大,谐振腔内电场和磁场的分布也随之发生改变。当电子注的等离子体频率超过谐振腔的谐振频率时,谐振腔内的电磁场分布将发生很大的变化,出现了电子注内外电场方向相反和趋肤效应等现象。 相似文献
9.
将电子注视为等离子体柱,从填充等离子体柱的谐振腔的物理模型出发,推导了圆柱腔填充中心电子注时TM0m0模式的特征方程,并重点分析了填充电子注的圆柱腔中TM010模式和TM020模式的谐振频率和电磁场分布随等离子频率的变化情况。研究结果表明,随着电子注的等离子体频率不断增大,谐振频率也不断增大,谐振腔内电场和磁场的分布也随之发生改变。当电子注的等离子体频率超过谐振腔的谐振频率时,谐振腔内的电磁场分布将发生很大的变化,出现了电子注内外电场方向相反和趋肤效应等现象。 相似文献
10.
Osvaldo M. Moreschi George A. J. Sparling 《Communications in Mathematical Physics》1984,95(1):113-120
A new theorem relating mass and charges is deduced, which can be applied to more general physical systems than those covered by the theorem of Gibbons and Hull [1].On leave from Instituto de Matématicas Astronomía y Física, Universidad Nacional de Córdoba, (5000) Córdoba, ArgentinaAlfred P. Sloan Fellow; supported in part by a grant from the National Science Foundation 相似文献
11.
12.
R. Klíma 《Czechoslovak Journal of Physics》1974,24(8):846-851
In the framework of classical electrodynamics, the angular momentum transported into (and/or from) a volume bounded by a rotational surface is derived. The dependences of electromagnetic field on space and time, and also the electromagnetic properties of the interacting masses are arbitrary. The results may be useful for the theory of toroidal currents induced by high-frequency heating of plasmas. A connection with the Manley-Rowe equations is given. 相似文献
13.
Resonant electromagnetic properties of plasma density profiles modified by ponderomotive force and found in analytical works and numerical calculations are investigated from the aspect of reflectivity and profile stability to the spatial variations of the feedback ponderomotive force. 相似文献
14.
Conventional thermoacoustic-piezoelectric (TAP) harvesters convert thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous medium. At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezoelectric diaphragm, placed at the end of the resonator. In this study, the TAP harvester is coupled with an auxiliary elastic structure in the form of a simple spring–mass system to amplify the strain experienced by the piezoelectric element. The auxiliary structure is referred to as a dynamic magnifier and has been shown in different areas to significantly amplify the deflection of vibrating structures. A comprehensive model of the dynamically magnified thermoacoustic-piezoelectric (DMTAP) harvester has been developed that includes equations of motions of the system?s mechanical components, the harvested voltage, the mechanical impedance of the coupled structure at the resonator end and the equations necessary to compute the self-excited frequencies of oscillations inside the acoustic resonator. Theoretical results confirmed that significant amplification of the harvested power is feasible if the magnifier?s parameters are properly chosen. The performance characteristics of experimental prototypes of a thermoacoustic-piezoelectric resonator with and without the magnifier are examined. The obtained experimental findings are validated against the theoretical results. Dynamic magnifiers serve as a novel approach to enhance the effectiveness of thermoacoustic energy harvested from waste heat by increasing the efficiency of their harvesting components. 相似文献
15.
We have considered the influence of electromagnetic fluctuations on electron tunneling via one non-degenerate resonant level, the problem that is relevant for electron transport through quantum dots in the Coulomb blockade regime. We show that the overall effect of the fluctuations depends on whether the electron bands in external electrodes are empty or filled. In the empty band case, depending on the relation between the tunneling rate Γ and characteristic frequency Ω of the fluctuations, the field either simply shifts the conductance peak (for rapid tunneling, Γ Ω) or broadens it (for Γ Ω). In the latter case, the system can be in three different regimes for different values of the coupling g between electrons and the field. Increasing interaction strength in the region g < 1 leads to gradual suppression of the conductance peak at the bare energy of the resonant level ε0, while at g 1 it leads to the formation of a new peak of width
at the energy ε0 + Ecis a charging energy. For intermediate values of g the conductance is non-vanishing in the entire energy range from ε0 to ε0 + Ec. For filled bands the problem is essentially multi-electron in character. One consequence of this is that, in contrast to the situation with the empty band, the fluctuations of the resonant level do not suppress conductance at resonance for g < 1. At g> 1 a Coulomb gap appears in the position of the resonant level as a function of its bare energy which leads to suppression of conductance. 相似文献
16.
17.
Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 79–84, April, 1986.The authors are indebted to M. F. Fedorov and S. I. Yakovlenko for their valuable discussion and advice. 相似文献
18.
19.
Expressions for the energy density of an electromagnetic field in an isotropic transparent medium with cubic or higher order nonlinearity are derived. For comparatively long pulses, the local energy density is shown to depend not only on the squared modulus of the electromagnetic field envelope but also on the ellipticity of polarization of the radiation at the same point. (c) 2004 MAIK "Nauka/Interperiodica". 相似文献