首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

2.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

3.
The quaternary manganese tin bismuth selenide, Mn1.34Sn6.66Bi8Se20 was synthesized by combining constituent elements at 723 K. Single crystal structure determination revealed that Mn1.34Sn6.66Bi8Se20 is isostructural to the mineral pavonite, AgBi3S5, crystallizing in the monoclinic space group C2/m (#12) with a=13.648(3) Å; b=4.175(1) Å; c=17.463(4) Å; β=93.42(3)°. In the structure, two kinds of layered modules, denoted A and B, alternate along [0 0 1]. Module A consists of paired chains of face-sharing monocapped trigonal prisms (around Bi/Sn) separated by a single chain of edge-sharing octahedra (around Mn/Sn). Module B represents a NaCl-type fragment of edge-sharing [(Bi/Sn)Se6] octahedra. Mn1.34Sn6.66Bi8Se20 is an n-type narrow gap semiconductor with Eg∼0.29 eV. At 300 K, thermopower, electrical conductivity and lattice thermal conductivity values are −123 μV/K, 47 S/cm and 0.6 W/m K, respectively. Mn1.34Sn6.66Bi8Se20 is paramagnetic at high temperatures and undergoes antiferromagnetic transition at TN=10 K.  相似文献   

4.
Two new ternary ytterbium transition metal stannides, namely, Yb3CoSn6 and Yb4Mn2Sn5, have been obtained by solid-state reactions of the corresponding pure elements in welded tantalum tubes at high temperature. Their crystal structures have been established by single-crystal X-ray diffraction studies. Yb3CoSn6 crystallizes in the orthorhombic space group Cmcm (no. 63) with cell parameters of a=4.662(2), b=15.964(6), c=13.140(5) Å, V=978.0(6) Å3, and Z=4. Its structure features a three-dimensional (3D) open-framework composed of unusual [CoSn3] layers interconnected by zigzag Sn chains, forming large tunnels along the c-axis which are occupied by the ytterbium cations. Yb4Mn2Sn5 is monoclinic space group C2/m (no. 12) with cell parameters of a=16.937(2), b=4.5949(3), c=7.6489(7) Å, β=106.176(4)°, V=571.70(8) Å3, and Z=2. It belongs to the Mg5Si6 structure type and its anionic substructure is composed of parallel [Mn2Sn2] ladders interconnected by unusual zigzag [Sn3] chains, forming large tunnels along the c-axis, which are filled by the ytterbium cations. Band structure calculations based on density function theory methods were also made for both compounds.  相似文献   

5.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

6.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

7.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

8.
β-NH4AlF4 has been synthesised ionothermally using 1-ethyl-3-methylimidazolium hexafluorophosphate as solvent and template provider. β-NH4AlF4 crystals were produced which were suitable for single crystal X-ray diffraction analysis. A phase transition occurs between room temperature (298 K) and low temperature (93 K) data collections. At 298 K the space group=I4/mcm (no. 140), α=11.642(5), c=12.661(5) Å, Z=2 (10NH4AlF4), wR(F2)=0.1278, R(F)=0.0453. At 93 K the space group=P42/ncm (no. 138), α=11.616(3), c=12.677(3) Å, Z=2 (10NH4AlF4), wR(F2)=0.1387, R(F)=0.0443. The single crystal X-ray diffraction study of β-NH4AlF4 shows the presence of two different polymorphs at low and room temperature, indicative of a phase transition. The [AlF4/2F2] layers are undisturbed except for a small tilting of the AlF6 octahedra in the c-axis direction.  相似文献   

9.
A new solid solution TlFe0.22Al0.78As2O7 has been synthesized by a solid-state reaction. The structure of the title compound has been determined from a single-crystal X-ray diffraction and refined to final values of the reliability factors: R(F2)=0.030 and wR(F2)=0.081 for 1343 independent reflections with I>2σ(I). It crystallizes in the triclinic space group P-1, with a=6.296(2) Å, b=6.397(2) Å, c=8.242(2) Å, α=96.74(2)°, β=103.78(2)°, γ=102.99(3)°, V=309.0(2) Å3 and Z=2. The structure can be described as a three-dimensional framework containing (Fe/Al)O6 octahedra connected through As2O7 groups. The metallic units and diarsenate groups share oxygen corners to form a three-dimensional framework with interconnected tunnels parallel to the a, b and c directions, where Tl+ cations are located. The ionic conductivity measurements are performed on pellets of the polycrystalline powder. At 683 K, The conductivity value is 5.23×10−6 S cm−1 and the ionic jump activation energy is 0.656 eV. The bond valence analysis reveals that the ionic conductivity is ensured by Tl+ along the [001] direction.  相似文献   

10.
The uranyl and neptunyl(VI) iodates, K3[(UO2)2(IO3)6](IO3)·H2O (1) and K[NpO2(IO3)3]·1.5H2O (2), have been prepared and crystallized under mild hydrothermal conditions. The structures of 1 and 2 both contain one-dimensional 1[AnO2(IO3)3]1−(An=U,Np) ribbons that consist of approximately linear actinyl(VI) cations bound by iodate anions to yield AnO7 pentagonal bipyramids. The AnO7 units are linked by bridging iodate anions to yield chains that are in turn coupled by additional iodate anions to yield ribbons. The edges of the ribbons are terminated by monodentate iodate anions. For 1 and 2, K+ cations and water molecules separate the ribbons from one another. In addition, isolated iodate anions are also found between 1[UO2(IO3)3]1− ribbons in 1. In order to aid in the assignment of oxidation states in neptunyl containing compounds, a bond-valence sum parameter of 2.018 Å for Np(VI) bound exclusively to oxygen has been developed with b=0.37 Å. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, , a=7.0609(4) Å, b=14.5686(8)  Å, c=14.7047(8)  Å, α=119.547(1)°, β=95.256(1)°, γ=93.206(1)°, Z=2, R(F)=2.49% for 353 parameters with 6414 reflections with I>2σ(I); (203 K, MoKα, λ=0.71073): 2, monoclinic, P21/c, a=7.796(4)  Å, b=7.151(3)  Å, c=21.79(1)  Å, β=97.399(7)°, Z=4, R(F)=6.33% for 183 parameters with 2451 reflections with I>2σ(I).  相似文献   

11.
Na2Ni(HPO3)2, obtained as light yellow-green crystals under mild hydrothermal conditions, crystallizes in the orthorhombic Pnma space-group with lattice parameters: a=11.9886(3), b=5.3671(2), c=9.0764(3) Å, V=584.01 Å3, Z=4. The structure consists of zig-zag chains of NiO6 octahedra bridged by two HPO32− and the chains are further connected through HPO32− to four nearest chains to form a three dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The Na cations reside in the irregular Na(1)O5, Na-O of 2.276-2.745 Å, and Na(2)O9, Na-O of 2.342-2.376 Å, environments. The presence of the phosphite monoanion has been further confirmed by IR spectroscopy. Due to the 3D framework of Ni connected by O-P-O bridges, the magnetic susceptibility behaves as a paramagnet above 100 K (C=1.49(2) emu K mol−1, μeff=3.45 μB, Θ=−39(2) K) and below 6 K, it orders antiferromagnetically as confirmed the sharp drop and the non-Brillouin behavior of the isothermal magnetization at 2 K.  相似文献   

12.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

13.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

14.
A new rare earth nickel stannide, Sm2NiSn4, has been prepared by reacting the pure elements at high temperature in welded tantalum tubes. Its crystal structure was established by single crystal X-ray diffraction studies. Sm2NiSn4 crystallizes in the orthorhombic space group Pnma (No. 62) with cell parameters of a=16.878(2) Å, b=4.4490(7) Å, c=8.915(1) Å, and Z=4. Its structure can be viewed as the intermediate type between ZrSi2 and CeNiSi2. Sm2NiSn4 features two-dimensional (2D) corrugated [NiSn4]6− layers in which the 1D Sn zigzag chains and the 2D Sn square sheets are bridged by Ni atoms. The Sm3+ cations are located at the interlayer space. Results of both resistivity measurements and extended-Hückel tight-binding band structure calculations indicate that Sm2NiSn4 is metallic.  相似文献   

15.
Quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 were synthesized on direct combination of their elements in stoichiometric ratios at T>800 °C under vacuum. Their structures were determined with X-ray diffraction of single crystals. InSn2Bi3Se8 crystallizes in monoclinic space group C2/m (No. 12) with a=13.557(3) Å, b=4.1299(8) Å, c=15.252(3) Å, β=115.73(3)°, V=769.3(3) Å3, Z=2, and R1/wR2/GOF=0.0206/0.0497/1.092; In0.2Sn6Bi1.8Se9 crystallizes in orthorhombic space group Cmc21 (No. 36) with a=4.1810(8) Å, b=13.799(3) Å, c=31.953(6) Å, V=1843.4(6) Å3, Z=4, and R1/wR2/GOF=0.0966/0.2327/1.12. InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 are isostructural with CuBi5S8 and Bi2Pb6S9 phases, respectively. The structures of InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 feature a three-dimensional framework containing slabs of NaCl-(311) type with varied thicknesses. Calculations of the electronic structure and measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps. Both compounds show n-type semiconducting properties with Seebeck coefficients −270 and −230 μV/K at 300 K for InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9, respectively.  相似文献   

16.
Crystal structure of LiB3O5 (a framework of [B3O5] rings and Li atoms located in interspaces) was refined at high temperatures using single-crystal X-ray diffraction, MoKα-radiation, anharmonic approximation, orthorhombic; Pna21; Z=4; 20 °C (a=8.444, b=7.378, c=5.146 Å, 1411 F(hkl), R=0.022); 227 °C (a=8.616, b=7.433, c=5.063 Å, 1336 F(hkl), R=0.026), 377 °C (a=8.746, b=7.480, c=5.013 Å, 1193 F(hkl), R=0.035). A high mobility of Li atoms and their highly asymmetric vibrations are revealed. Ellipsoid of Li thermal vibrations is oviform. Li is shifted on heating to 0.26 Å mainly along a-axis causing high thermal expansion in this direction; Li temperature factors are multiplied by 4 on heating. Rigid boron-oxygen groups in LiB3O5 remain practically stable on heating similar to α-Na2B8O13 and α-CsB5O8. At the same time these groups rotate relative to each other like hinges leading to extremely anisotropic thermal expansion (αa=101, αb=31, αc=−71, αv=60×10−6 °C−1, 20-530 °C, HTXRPD data).  相似文献   

17.
Crystals of Ti2PTe2 have been synthesised by chemical vapour transport. Ti2PTe2 crystallises, isostructural to the mineral tetradymite (Bi2STe2), in the space group Rm with unit-cell parameters a=3.6387(2) Å and c=28.486(2) Å for the hexagonal setting. In the structure, layers of isolated phosphide and telluride anions form an ordered close sphere-packing with titanium cations filling two-thirds of the octahedral voids. From XANES fluorescence, the presence of Ti4+ is clearly established. In accordance with the ionic formula (Ti4+)2(P3−)(Te2−)2(e) metallic conductivity (ρ=40 μΩ cm at 300 K) and nearly temperature-independent paramagnetism are found. The electronic band structure shows bands of titanium states crossing the Fermi level in directions corresponding to the ab-plane and a band gap along the c-axis.  相似文献   

18.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

19.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

20.
A new Cd-containing transition metal Zintl phase, Sr11Cd6Sb12, was obtained from a direct element combination reaction using the Sn flux method. Its structure was determined using single-crystal X-ray diffraction methods. It crystallizes in the monoclinic space group C2/m with a=32.903(3) Å, b=4.7666(5) Å, c=12.6057(13) Å, β=109.752(2)°, and Z=2. Sr11Cd6Sb12 has a one-dimensional infinite chain structure consisting of double pentagonal tubes, where Sr2+ cations reside both within two tubes and between the infinite chains of tubes. The anionic framework [Cd6Sb12]22− has features similar to those of Eu10Mn6Sb13. The difference in Eu10Mn6Sb13 is that its double pentagonal tubes are further condensed to form two-dimensional layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号