首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of K3[Cu(CN)4], 3-acetylpyridine (3-Acpy) or 4-acetylpyridine (4-Acpy) in the presence of Me3SnCl in H2O/acetonitrile media at room temperature afford the 3D-supramolecular coordination polymers (SCPs)3[Cu2CN(μ-CN)·(3-Acpy)2] 1 and 3[Cu2CN(μ-CN)·(4-Acpy)2] 2. The structures of 1 and 2 consist of Cu2CN building blocks which are connected by CN groups, forming 1D-zig-zag chains. Each chain is bonded to another chain by hydrogen bonding into a 2D-layer, which is further stacked in an interwoven mode by π–π stacking interactions and hydrogen bonds in 1 and 2, as well as Cu···Cu interactions in 1, to create supramolecular 3D-network structures. The high dimensional topologies of 1 and 2 result mainly from extensive hydrogen bonding and π–π stacking. The long wavelength absorption band at 400–420 nm in the electronic spectra of 1 and 2 is assigned to a CT from copper(I) to the Acpy ligand. Compound 2 exhibits strong luminescence at 485 and 527 nm, corresponding to MLCT and metal-centered transitions, respectively.  相似文献   

2.
Four copper(I) cyanide coordination polymers containing 2-(n-pyridyl)benzimidazole ligands, namely [Cu2(CN)(2-PyBIm)]n (1), [Cu2(CN)2(3-PyHBIm)]n (2), {[Cu3(CN)3(4-PyHBIm)4] · 2H2O}n (3) and [Cu5(CN)3(4-PyBIm)2]n (4), have been synthesized and characterized by X-ray crystallography. Complex 1 is a one-dimension coordination polymer in which 2-(2-pyridyl)benzimidazole is deprotonated and adopts a bridging tridentate coordination mode. Complex 2 has ladder-like structure in which 2-(3-pyridyl)benzimidazole does not deprotonate and acts as a bidentate bridge. Complex 3 displays a saddle-shaped helical chain constructed through μ2-cyanide group and the outstretched neutral 2-(4-pyridyl)benzimidazole monodentate ligand. Complex 4 shows two-dimension layer polymeric structure in which deprotonated 2-(4-pyridyl)benzimidazole acts as a tridentate bridging ligand. The cyanide groups in four complexes all act as bidentate bridging ligands. These complexes are thermal stable and display luminescence in the solid states.  相似文献   

3.
Reactions of CuCl2 with different CN complexes in presence of a neutral ancillary ligand lead to two novel mixed-valence Cu complexes [CuII(bpy)CuI(CN)3]n, 1 (bpy = 2,2′-bipyridine) and {[CuII(tn)2][CuI4(CN)6]}n2 (tn = 1,3-diaminopropane). For compound 1, the asymmetric unit involves two Cu ions Cu1 and Cu2 (CuI and CuII centres, respectively) which strongly differ in their environments. The Cu1 ion presents a CuC4 pseudo-tetrahedral geometry, while the Cu2 ion presents a CuN5 slightly distorted square-pyramidal geometry. The extended structure of 1 is generated by three cyano ligands which differ in their coordination modes. One CN group has a μ3 coordination mode and bridges two CuI and one CuII ion, while the two other CN groups act as μ2 bridges leading to a sophisticated 3-D structure. As for 1, the asymmetric unit of 2 involves three crystallographically different Cu ions (Cu1A and Cu1B, presumably CuI centres, and Cu2 presumably CuII centres). The Cu2 ion presents centrosymmetric CuN4 coordination environments involving four nitrogen atoms from two bidentate tn ligands; while the Cu1A and Cu1B ions are three coordinated to cyano groups. The structure can be described as formed by 18-membered “[CuI(CN)]6” planar metallocycles that are connected to their six neighbors to generate 2-D sheets; these sheets stack forming infinite hexagonal channels in which the [Cu(tn)2]2+ units are located. Magnetic measurements show an unexpected weak ferromagnetic coupling (θ = 0.239(1) K) of the CuII ions through the long and “a priori diamagnetic” –NC–CuI–CN– bridges in compound 1 and an essentially paramagnetic behavior in compound 2.  相似文献   

4.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

5.
Reaction of copper(I) chloride with thiophene-2-carbaldehyde thiosemicarbazone (Httsc) in acetonitrile in the presence of Ph3P yielded a sulfur-bridged dimer [Cu2Cl22-S-Httsc)2(PPh3)2] · 2CH3CN (1), while a similar reaction with isatin-3-thiosemicarbazone (H2itsc) formed a monomer, [CuCl(H2itsc)(Ph3P)2] · 2CH3CN (3). Furan-2-carbaldehyde thiosemicarbazone (Hftsc) also formed a compound of the composition [Cu2Cl2(Hftsc)2(PPh3)2] · 2H2O (2). Complexes 13 have been characterized using elemental analysis, IR, 1H and 31P NMR spectroscopy and single crystal X-ray crystallography (1 and 3). Acetonitrile is engaged in hydrogen bonding with the chlorine atom {NCCH2–H?Cl)}, which is necessary for the stabilization of the bridging sulfur in 1. In compound 3, however, acetonitrile is strongly hydrogen bonded to the NH hydrogen of the isatin ring {CH3CN?NH(isatin)} and not to the chlorine atom. The Cu?Cu contact of 2.7719(5) Å in dimer 1 is close to twice the van der Waals radius of the Cu atom (2.80 Å).  相似文献   

6.
Three novel organic-inorganic hybrid borotungstates {[Ni(phen)2(H2O)]2H(α-BW12O40)}·4H2O (1), [CuI(2,2'-bipy)(4,4′-bipy)0.5]2{[CuI(2,2′-bipy)]2CuI(4,4′-bipy)2(α-BW12O40)} (2) and {[CuI(4,4′-bipy)]3H2(α-BW12O40)}·3.5H2O (3) (phen=1,10-phenanthroline, 2,2′-bipy=2,2′-bipyridine, 4,4′-bipy=4,4′-bipyridine) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, UV spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), single-crystal X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and photoluminescence. The structural analysis reveals that 1 consists of a 0-D bisupporting polyoxometalate cluster where two [Ni(phen)2(H2O)]2+ cations are grafted on the polyoxoanion [α-BW12O40]5- through two terminal oxygen atoms, 2 shows a 1-D infinite chain constructed from [α-BW12O40]5- polyoxoanions and {[CuI(2,2′-bipy)]2CuI(4,4′-bipy)2}3+ cations by means of alternating fashion, and 3 displays an unprecedented 2D extended structure built by [α-BW12O40]5- polyoxoanions and -CuI-4,4′-bipy- linear chains, in which each [α-BW12O40]5- polyoxoanion acts as a tetradentate inorganic ligand and provides three terminal oxygen atom and one two-bridging oxygen atom. The presence of NiII and WVI in 1, CuI ions and WVI in 2 and 3 are identified by XPS spectra. The photoluminescence of 2 and 3 are also investigated.  相似文献   

7.
Four cyano bridged Cu(II)–Pd(II) heterometallic complexes, [Cu(dpt)Pd(CN)4]n (1), {[Cu2(medpt)2Pd(CN)4](ClO4)2 · 3H2O}n (2), {[Cu2(dien)2Pd(CN)4](ClO4)2 · 2CH3OH}n (3) and {[Cu2(iPrdien)2Pd(CN)4](ClO4)2 · 2H2O}n (4) [dpt = 3,3′-iminobispropylamine; medpt = 3,3′-diamino-N-methyldipropylamine; dien = diethylenetriamine and iprdien = N′-isopropyldiethylenetriamine] have been synthesized and characterized by single crystal X-ray diffraction analysis, magnetic measurement and thermal study. Complexes 1, 2 and 3 are 1D coordination polymers, while 4 presents a 2D network. In 1, the cis-directed cyanide ligands of [Pd(CN)4]2− anions link two Cu(dpt) units to form a neutral coordination polymer, whereas in 2, 3 and 4, all the cyanide groups of [Pd(CN)4]2− take part in bonding with four adjacent Cu(II) ions, resulting in cationic coordination polymers counterbalanced by perchlorate anions. The structures are compared with those of analogous [Ni(CN)4]2− derivatives. The magnetic behavior shows antiferromagnetic interactions in all the complexes.  相似文献   

8.
A series of trinuclear copper(I) acetylide complexes with carbonyl moiety, [Cu3(μ-dppm)331-CCC(O)R)2](ClO4) (R = H (1), CH3 (2), OCH3 (3), NH2 (4), NEt2 (5)) (dppm = bis(diphenylphosphino)methane), have been synthesized and characterized. The crystal structures of [Cu3(μ-dppm)331-CCC(O)CH3)2](ClO4) (2) and [Cu3(μ-dppm)331-CCC(O)NH2)2](ClO4) (4) were determined by X-ray diffraction. The photophysical properties of complexes 15 have been studied. Complexes 15 show luminescence both in the solid state and in acetonitrile solution at 298 K, and their emission energies are in the order: 5 > 4 > 3 > 2 > 1. Density function theory (DFT) calculations at the hybrid Perdew, Burke, and Ernzerhof functional (PBE1PBE) level were performed on model complex 1 to elucidate the emission origin of complexes 15.  相似文献   

9.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

10.
Two novel three-dimensional (3-D) heterometallic frameworks containing dinuclear p-block metal–oxygen clusters, formulated as [Na2(H2O)3Cu2(H2O)6(sip)2] · H2O 1 and [K2(H2O)2Cu2(H2O)5(sip)2] · H2O 2 (sip3− = 5-sulfoisophthalic anion), have been synthesized at room temperature. Single-crystal X-ray diffraction revealed that similar structural motifs (one-dimensional zigzag chain built by copper atoms and sip3− ligands, and dinuclear p-block metal–oxygen clusters) can be found within their crystal structures. Compound 1 shows an interesting 3-D structure constructed from copper-sip chains interconnected by two kinds of dinuclear sodium–oxygen clusters adopting 4- and 6-connected fashions. Compound 2 displays a 3-D framework formed by cross-linking copper-sip chains via 6-connected dinuclear potassium–oxygen clusters. Interestingly, an irreversible structural conversion from 1 to 2 was observed.  相似文献   

11.
Herein we report on the synthesis, single crystal X-ray structure, spectroscopic and magnetic properties of [{Cu2(tidf)(H2O)}2(μ-CN)2Fe(CN)4]·6H2O (1), [Cu2(tidf)(H2O)2][Ni(CN)4] (2) and [Cu2(tidf)(H2O)2][Fe(CN)5NO]·H2O (3) (tidf = a Robson type macrocyclic ligand obtained on condensation of 2,6-diformyl-4-methylphenol and 1,3-diaminopropane). Complex (1) is pentanuclear; two paramagnetic dicopper(II) units are linked by a hexacyanoferrate(II) ion through two cyano-bridges. All compounds exhibit extensive, three-dimensional, supramolecular structures supported by classic hydrogen bonding between the coordinated aqua ligands, water molecules and cyano groups. Magnetism as a function of the temperature of complexes 1-3 is consistent with a strong antiferromagnetism with exchange parameters 2J estimated −783(29), −913(2), −905(1), respectively.  相似文献   

12.
Two novel coordination polymers [Cu3(1,3-BDC)4(Dpq)2] (1) and [Cu2(BTC)(OH)(Dpq)2] · H2O (2), have been hydrothermally synthesized by self-assembly of aromatic polycarboxylate ligands 1,3-H2BDC (1,3-H2BDC = 1,3-benzenedicarboxylate) or H3BTC (H3BTC = 1,3,5-benzenetricarboxylate), chelating ligand Dpq (Dpq = dipyrido[3,2-d:2′,3′-f]quinoxaline), and copper chloride. X-ray diffraction analysis reveals that each trinuclear CuII cluster is bridged by two coordination modes of 1,3-BDC ligands to form one-dimensional (1-D) chain structure in complex 1. Complex 2 possesses a two-dimensional (2-D) layer network composed of dinuclear [Cu2(OH)(Dpq)2] unit and bridging ligand BTC. The adjacent chains for 1 or the adjacent layers for 2 are further linked by π-π stacking interactions to form the three-dimensional (3-D) supramolecular frameworks. Moreover, the electrochemical properties of the two copper(II) complexes bulk-modified carbon paste electrodes (Cu-CPEs: 1-CPE and 2-CPE) have been studied, and the results indicate that both Cu-CPEs give one-electron quasi-reversible redox waves in potential range of 600 to −400 mV due to the metal copper ion Cu(II)/Cu(I). The Cu-CPEs have good electrocatalytic activities toward the reduction of nitrite and bromate in 0.1 M pH 2 phosphates buffer solution, and have remarkable long term stability and especially good surface renewability by simple mechanical polishing in the event of surface fouling, which is important for practical application.  相似文献   

13.
14.
Two cyano-bridged dimetallic complexes derived from MnIII(Schiff-base) and [CrI(CN)5NO]3−, [Mn(3-CH3)salen]3[Cr(CN)5NO]·2.5H2O (1) and [Mn(5-CH3)salen]6[Cr(CN)5NO]2·2CH3OH·16H2O (2) [salen = N,N′-ethylenebis (salicylideneiminato)dianion] were synthesized and characterized. The reaction conditions of the two complexes are identical. The substituting group (CH3-) in the salen-type ligands gives different assembly styles for the two complexes, 1D zigzag chain for 1 while 2D grid network for 2. The magnetic investigation indicates the dominant antiferromagnetic interactions between the Mn(III) and Cr(I) mediated by the CN bridge. Due to the weak interchain antiferromagnetic interactions, no magnetic ordering phase was observed in complex 1. Interestingly, complex 2 showed the long range ferrimagnetic magnetic ordering with Tc = 9 K, in contrast to 1. Furthermore, the hysteresis loop confirms the nature of complex 2 as soft ferrimagnet.  相似文献   

15.
The reaction between 3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridinecarboxaldehyde semicarbazone (pyridoxal-semicarbazone or PLSC) and appropriate chloride, sulfate, nitrate or thiocyanate Cu(II) salts in water/alcohol mixtures resulted in the formation of new copper(II) complexes: [Cu(PLSC)Cl2] (1), [Cu(PLSC)(H2O)(SO4)]2·3H2O (2), [Cu2(PLSC)2(NCS)2](NCS)2 (3), [Cu(PLSC)(NO3)2(CH3OH)] (4) and [Cu(PLSC-2H]NH3·H2O (5). The complexes were characterized by elemental analysis, conductometric measurements and IR spectroscopy, while complexes 1, 2, 3 and 4 were further characterized by single crystal X-ray diffraction.  相似文献   

16.
Four new silver(I) coordination polymers, namely [Ag(NH2pyz)(ox)0.5]n (1), [Ag(NH2pyz)(adp)0.5·2H2O]n (2), [Ag2(NH2pyz)2(bdc)·H2O]n (3) and [Ag2(NH2pyz)2.5(ndc)]n (4) [NH2pyz = 2-aminopyrazine, ox = oxalate anion, adp = adipate anion, bdc = 1,4-benzenedicarboxylate anion, ndc = 1,4-naphthalenedicarboxylate anion] have been synthesized by solution phase ultrasonic reactions of Ag2O with heterocyclic NH2pyz and various dicarboxylates under ammoniacal conditions. The complexes were characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Complex 1 is a three-dimensional (3D) framework with an α-ThSi2 topology. Complex 2 features a 2D 44-sql net involving infinite 1D double Ag-NH2pyz chains and flexible adp anion spacers. Complex 3 is a 3D framework in which 1D single Ag-NH2pyz chains are pillared by bdc anions to form a 2D 63-hcb network, adjacent 2D networks are packed into a 3D framework through bridging O atoms of dbc anions. Complex 4 is a 2D structure built from infinite 1D stair-like chains containing finite Ag4(NH2pyz)5 subunits. The results show that the structural diversity of the complexes result from the nature of the dicarboxylate ligands. The photoluminescence properties of the complexes were also investigated in the solid state at room temperature.  相似文献   

17.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

18.
A series of new compounds containing rare earth cations (Eu to Yb) and paramagnetic cluster anion [Re6Te8(CN)6]3− was prepared and investigated. The X-ray structural analyses have revealed that the compounds [{Ln(H2O)4}{Re6Te8(CN)6}] · 2.5H2O; Ln = Eu (1), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), [{Gd(H2O)3}{Re6Te8(CN)6}] · 2.5H2O (2) and [{Yb(H2O)4}{Re6Te8(CN)6}] (8) are three-dimensional polymers based on Re–CN–Ln interactions. Measurements of magnetic susceptibility for 2 and 5 showed that effective magnetic moment (at 300 K) was 8.13 μB for compound 2 and 10.79 μB for compound 5 with weak antiferromagnetic ordering appeared at low temperatures.  相似文献   

19.
Reactions of different metal salts with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) gave rise to five new complexes, namely [Cu4(CN)4(3-abpt)2]n (1), [CuBr(3-abpt)]n (2), [CuI(3-abpt)]n (3), [Cu3I3(3-abpt)]n (4) and [Cu(3-abpt)(SO4)(H2O)]n (5). Compounds 1, 3, 4 and 5 are all 2D structures. Compound 1 is a double-layered polymer with an uncommon 3-nodal 3-connected (103)(102.4)4 network, 3 shows a 2D square layered structure, 4 is also a double-layered polymer with 2-nodal 4-connected (3.4.5.62.7)2(3.42.52.7) network and 5 is a 2D structure which is ultimately stacked with an ABAB repeat pattern. Compound 2 is a 1D coordination polymer which exhibits a ladder-like network. The photoluminescence of 1-2 has also been investigated. The long emission lifetimes of 1-2 could be assigned to metal-to-ligand charge transfer triple excited states [MLCT].  相似文献   

20.
5-Ferrocenylpyrimidine (FcPM) reacts with dinuclear copper(II) carboxylates ([Cu2(RCOO)4]; R = C6H5, C5H11, CH3) to produce one-dimensional coordination polymers [Cu2(C6H5COO)4(FcPM)]n (1), [Cu2(C5H11COO)4(FcPM)]n · nCH3CN (2), and a discrete tetranuclear complex [Cu2(CH3COO)4(FcPM)2] (3). Compounds 1 and 2 show similar zigzag chain structures, comprising alternate linking of FcPM and dinuclear copper(II) units, whereas the structure of 3 corresponds to the local structural motifs of 1 and 2. Reaction of FcPM with zinc salts (ZnX2; X = NO3, SCN) affords zinc-centered ferrocenyl cluster complexes, [Zn(NO3)2(FcPM)3] (4) and [Zn(SCN)2(FcPM)2] · 0.5H2O (5), with varying M:L ratios. FcPM acts as a bidentate ligand in 1 and 2, and as a monodentate ligand in the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号