首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have successfully synthesized a polycrystalline sample of tetragonal garnet-related Li-ion conductor Li7La3Hf2O12 by solid state reaction. The crystal structure is analyzed by the Rietveld method using neutron powder diffraction data. The structure analysis identifies that tetragonal Li7La3Hf2O12 has the garnet-related type structure with a space group of I41/acd (no. 142). The lattice constants are a=13.106(2) Å and c=12.630(2) Å with a cell ratio of c/a=0.9637. The crystal structure of tetragonal Li7La3Hf2O12 has the garnet-type framework structure composed of dodecahedral La(1)O8, La(2)O8 and octahedral HfO6. Li atoms occupy three types of crystallographic site in the interstices of this framework structure, where Li(1) atom is located at the tetrahedral 8a site, and Li(2) and Li(3) atoms are located at the distorted octahedral 16f and 32g sites, respectively. These Li sites are filled with the Li atom. The present tetragonal Li7La3Hf2O12 sample exhibits bulk Li-ion conductivity of σb=9.85×10−7 S cm−1 and grain-boundary Li-ion conductivity of σgb=4.45×10−7 S cm−1 at 300 K. The activation energy is estimated to be Ea=0.53 eV in the temperature range of 300-580 K.  相似文献   

2.
The new phases Ba2LaMNb4O15: M=Mn, Fe were prepared by solid state reaction at 1100 °C. They have the tetragonal tungsten bronze structure, space group P4/mbm, at room temperature. The two octahedral sites show partial order of M and Nb with preferential occupancy of the smaller B(1) sites by M. Both phases have high permittivities 90±15 over the range 10-320 K. Ba2LaFeNb4O15 is highly insulating with bulk conductivity ?10−8 ohm−1 cm−1 at 25 °C and tan δ?0.001 over the range 100-320 K and at 105 Hz. Solid solutions between these new phases and the compositionally and structurally related relaxor ferroelectric Ba2LaTi2Nb3O15 show gradual loss of ferroelectric behaviour attributed to replacement of polarisable Ti4+ by a mixture of (Mn, Fe)3+ and Nb5+.  相似文献   

3.
Polycrystalline samples of La18Li8Rh4MO39 (M=Ti, Mn, Ru) have been prepared by a solid-state method and studied by neutron powder diffraction. They are isostructural with La18Li8Rh5O39 and adopt the cubic space group with a ∼12.22 Å. Their structure consists of a La-O framework containing intersecting channels that run along 〈111〉. These channels are occupied by chains made up of alternating, face-sharing trigonal-prismatic and octahedral coordination polyhedra; there are two crystallographically distinct types of octahedral site. The prisms are occupied by Li and the transition metals are disordered over the two octahedral sites.  相似文献   

4.
The presence of SmCrO4 is experimentally established. In Mg2+-substituted SmCrO3, single-phase perovskite Sm(Cr1−xMgx)O3, where x=0-0.23, are formed at ∼830°C by decomposition of Sm(Cr1−xMgx)O4 which crystallizes at 530-570°C from amorphous materials prepared by the hydrazine method. Sm(Cr1−xMgx)O3 solid solution powders consisting of submicrometer-size particles are sinterable; dense materials can be fabricated by sintering for 2 h at 1700°C in air. The relative densities, grain sizes, and electrical conductivities increase with increased Mg2+ content. Sm(Cr0.77Mg0.23)O3 materials exhibit an excellent direct current electrical conductivity of 2.2×103 S m−1 at 1000°C.  相似文献   

5.
Structural and photoluminescence properties of undoped and Ce3+-doped novel silicon-oxynitride phosphors of Ba4−zMzSi8O20−3xN2x (M=Mg, Sr, Ca) are reported. Single-phase solid solutions of Ba4−zMzSi8O20−3xN2x oxynitride were synthesized by partial substitutions of 3O2−→2N3− and Ba→M (M=Mg, Ca, Sr) in orthorhombic Ba2Si4O10. The influences of the type of alkaline earth ions of M, the Ce3+ concentration on the photoluminescence properties and thermal quenching behaviors of Ba3MSi8O20−3xN2x (M=Mg, Ca, Sr, x=0.5) were investigated. Under excitation at about 330 nm, Ba3MSi8O20−3xN2x:Ce3+ (x=0.5) exhibits efficient blue emission centered at 400-450 nm in the range of 350-650 nm owing to the 5d→4f transition of Ce3+. The emission band of Ce3+ shifts to long wavelength by increasing the ionic size of M due to the modification of the crystal field, as well as the Ce3+ concentrations due to the Stokes shift and energy transfer or reabsorption of Ce3+ ions. Among the silicon-oxynitride phosphors of Ba3MSi8O18.5N:Ce3+, M=Sr0.6Ca0.4 possesses the best thermal stability probably related to its high onset of the absorption edge of Ce3+.  相似文献   

6.
The total conductivity and Seebeck coefficient of a series of Ni-containing phases, including La2Ni1−xMxO4+δ (M=Co, Cu; x=0.1-0.2) with K2NiF4-type structure and perovskite-like La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ and La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ, were studied in the oxygen partial pressure range from 10−18 Pa to 50 kPa at 973-1223 K. Within the phase stability domain, the conductivity of layered nickelates is predominantly p-type electronic and occurs via small-polaron mechanism, indicated by temperature-activated hole mobility and p(O2) dependencies of electrical properties. In oxidizing conditions similar behavior is characteristic of Ni-containing perovskites, which exhibit, however, significant ionic contribution to the transport processes. The role of ionic conduction increases with decreasing p(O2) and becomes dominant in reducing atmospheres. All nickelate-based phases decompose at oxygen pressures considerably lower with respect to Ni/NiO boundary. The partial substitution of nickel in La2Ni(M)O4+δ has minor effect on the stability limits, which are similar to that of La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ. On the contrary, praseodymium doping enhances the stability of La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ down to p(O2) values as low as 10−17-10−10 Pa at 1023-1223 K.  相似文献   

7.
Ca2FeAl1−xMgxO5 (x=0, 0.05 and 0.1) compounds adopting the brownmillerite-type structure were prepared by a self-combustion route using two different fuels. Characterisation was performed using X-ray powder diffraction, Mössbauer spectroscopy, magnetisation measurements, chemical analysis, scanning electron microscopy and 4-point dc conductivity measurements. Global results indicate that the solubility limit was reached for x=0.1. An antiferromagnetic behaviour was detected for all studied compositions, with magnetic ordering temperatures of 340 and 290 K for x=0 and 0.05, respectively. Mg doping increases the number of iron cations in tetrahedral sites, which induces magnetisation enhancement at low temperatures through the coupling between octahedral iron cations in different octahedral planes. The compounds exhibit semiconductor behaviour and Mg2+ doping yields a significant enhancement of the total conductivity, which can be essentially attributed to the presence of Fe4+ ions.  相似文献   

8.
The structures of new phases Li6CaLa2Sb2O12 and Li6.4Ca1.4La2Sb2O12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3?d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li6.4Ca1.4La2Sb2O12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li6CaLa2Sb2O12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10−7 S cm−1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li3Gd3Te2O12, Li3Tb3Te2O12, Li3Er3Te2O12 and Li3Lu3Te2O12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10−6 S cm−1 at 285 °C and activation energies in the range 0.77(4)≤Ea/eV≤1.21(3).  相似文献   

9.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

10.
A polycrystalline sample of Pr18Li8Fe4RuO39 has been synthesized by a solid state method and characterized by neutron powder diffraction, magnetometry and Mössbauer spectroscopy; samples of Pr18Li8Fe5−xMnxO39 and Pr18Li8Fe5−xCoxO39 (x=1, 2) have been studied by magnetometry. All these compounds adopt a cubic structure (space group , a0∼11.97 Å) based on intersecting 〈111〉 chains made up of alternating octahedral and trigonal-prismatic coordination sites. These chains occupy channels within a Pr-O framework. The trigonal-prismatic site in Pr18Li8Fe4RuO39 is occupied by Li+ and high-spin Fe3+. The remaining transition-metal cations occupy the two crystallographically-distinct octahedral sites in a disordered manner. All five compositions adopt a spin-glass-like state at 7 K (Pr18Li8Fe4RuO39) or below.  相似文献   

11.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

12.
X-band and high-frequency EPR spectroscopy were used for studying the manganese environment in layered Li[MgxNi0.5−xMn0.5]O2, 0?x?0.5. Both layered LiMg0.5Mn0.5O2 and monoclinic Li[Li1/3Mn2/3]O2 oxides (containing Mn4+ ions only) were used as EPR standards. The EPR study was extended to the Ni-substituted analogues, where both Ni2+ and Mn4+ are paramagnetic. For LiMg0.5−xNixMn0.5O2 and Li[Li(1−2x)/3NixMn(2−x)/3]O2, an EPR response from Mn4+ ions only was detected, while the Ni2+ ions remained EPR silent in the frequency range of 9.23-285 GHz. For the diamagnetically diluted oxides, LiMg0.25Ni0.25Mn0.5O2 and Li[Li0.10Ni0.35Mn0.55]O2, two types of Mn4+ ions located in a mixed (Mn-Ni-Li)-environment and in a Ni-Mn environment, respectively, were registered by high-field experiments. In the X-band, comparative analysis of the EPR line width of Mn4+ ions permits to extract the composition of the first coordination sphere of Mn in layered LiMg0.5−xNixMn0.5O2 (0?x?0.5) and Li[Li(1−2x)/3NixMn(2−x)/3]O2 (x>0.2). It was shown that a fraction of Mn4+ are in an environment resembling the ordered “α,β”-type arrangement in Li1−δ1Niδ1[Li(1−2x)/3+δ1Ni2x/3−δ1)α(Mn(2−x)/3Nix/3)β]O2 (where and δ1=0.06 were calculated), while the rest of Mn4+ are in the Ni,Mn-environment corresponding to the Li1−δ2Niδ2[Ni1−yMny]O2 () composition with a statistical Ni,Mn distribution. For Li[Li(1−2x)/3NixMn(2−x)/3]O2 with x?0.2, IR spectroscopy indicated that the ordered α,β-type arrangement is retained upon Ni introduction into monoclinic Li[Li1/3Mn2/3]O2.  相似文献   

13.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

14.
The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO2 and the B-site mixed magnetic delafossite AgCu0.5Mn0.5O2 were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO2 and AgCu0.5Mn0.5O2 display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 μV/K and conductivity values of σ=3.2×10−1 and 1.8×10−4 S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO2 is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO2 shows a solid solution domain between x=0 and 0.8Li+ followed by a plateau nearby 1.7 V (vs. Li+/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu0.5Mn0.5O2 also exhibits Li+/Ag+ displacement reaction in a comparable potential range than AgCuO2; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO2 and AgCu0.5Mn0.5O2 provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li+/Li), respectively, with no evidence of a new defined phases.  相似文献   

15.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

16.
Two new quaternary delafossite type oxides with the general formula Ag(Li1/3M2/3)O2, M=Rh, Ir, have been synthesized, and their structures characterized. Based on X-ray and electron diffraction analyses the structural similarity with AgRhO2 delafossite, has been evidenced. The real structures of the quaternary delafossites have been revealed, which has allowed to fully explain the diffuse scattering as observed in X-ray powder diffraction. AgRhO2 is thermally stable up to 1173 K, the behavior of the two quaternary compounds AgLi1/3Rh2/3O2 and AgLi1/3Ir2/3O2 is comparable, and they decompose above 950 and 800 K, respectively. AgRhO2 shows temperature independent paramagnetism, while for the other two an effective magnetic moment of 1.77μB for Ir, and 1.70μB for Rh were determined, applying the Curie-Weiss law. All compounds are semiconducting with activation energies of 4.97 kJ mol−1 (AgLi1/3Rh2/3O2), 11.42 kJ mol−1 (AgLi1/3Ir2/3O2) and 17.58 kJ mol−1 (AgRhO2).  相似文献   

17.
EPR studies were carried out in (30 - x) Li2O-xK2O-10CdO-59B2O3-1MnO2 multi-component glass system to understand the effect of the variation in the alkali ratios on the EPR parameters. The observed EPR spectra of Mn2+ ion exhibits resonances at g = 2.0, 3.3 and 4.3. The resonance at g = 2.0 is due to Mn2+ ions in an environment close to the octahedral symmetry, where as the resonances at g = 3.3 & 4.3 are due to the rhombic surroundings of Mn2+ ions. Hyperfine splitting constant values at g = 2.0 and number of paramagnetic centers & paramagnetic susceptibility at different observed resonances were evaluated. These parameters show non linear variation with progressive substitution of Li+ ion with K+ ions may be due to the changes in cation field strengths and local structural variation due to the variation in mixed alkali ion ratios.  相似文献   

18.
Series of compositions Bi2(M′xM1−x)4O9 with x=0.0, 0.1,…, 1.0 and M′/M=Ga/Al, Fe/Al and Fe/Ga were synthesized by dissolving appropriate amounts of corresponding metal nitrate hydrates in glycerine, followed by gelation, calcination and final heating at 800 °C for 24 h. The new compositions with M′/M=Ga/Al form solid-solution series, which are isotypes to the two other series M′/M=Fe/Al and Fe/Ga. The XRD data analysis yielded in all cases a linear dependence of the lattice parameters related on x. Rietveld structure refinements of the XRD patterns of the new compounds, Bi2(GaxAl1−x)4O9 reveal a preferential occupation of Ga in tetrahedral site (4 h). The IR absorption spectra measured between 50 and 4000 cm−1 of all systems show systematic shifts in peak positions related to the degree of substitution. Samples treated in 18O2 atmosphere (16 h at 800 °C, 200 mbar, 95% 18O2) for 18O/16O isotope exchange experiments show a well-separated IR absorption peak related to the M-18Oc-M vibration, where Oc denotes the common oxygen of two tetrahedral type MO4 units. The intensity ratio of M-18Oc/M-16Oc IR absorption peaks and the average crystal sizes were used to estimate the tracer diffusion coefficients of polycrystalline Bi2Al4O9 (D=2×10−22 m2s−1), Bi2Fe4O9 (D=5×10−21 m2s−1), Bi2(Ga/Al)4O9 (D=2×10−21 m2s−1) and Bi2Ga4O9 (D=2×10−20 m2s−1).  相似文献   

19.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

20.
Subsolidus phase relations in the CuOx-TiO2-Nb2O5 system were determined at 935 °C. The phase diagram contains one new phase, Cu3.21Ti1.16Nb2.63O12 (CTNO) and one rutile-structured solid solution series, Ti1−3xCuxNb2xO2: 0<x<0.2335 (35). The crystal structure of CTNO is similar to that of CaCu3Ti4O12 (CCTO) with square planar Cu2+ but with A site vacancies and a disordered mixture of Cu+, Ti4+ and Nb5+ on the octahedral sites. It is a modest semiconductor with relative permittivity ∼63 and displays non-Arrhenius conductivity behavior that is essentially temperature-independent at the lowest temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号