首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic ordering of the Fe2P-type Tb6FeTe2, Tb6CoTe2 Tb6NiTe2 and Er6FeTe2 phases (space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. Tb6FeTe2, Tb6CoTe2 and Tb6NiTe2 demonstrate high-temperature ferromagnetic and low-temperature spin reorientation transitions, whereas Er6FeTe2 shows antiferromagnetic transition, only.The Tb6FeTe2 and Tb6NiTe2 phases show same high-temperature collinear ferromagnetic structure, whereas Tb6FeTe2 is the commensurate non-collinear ferromagnet and Tb6NiTe2 is the canted ferromagnetic cone with K1=[0, 0, ±3/10] and K2=[±2/9, ±2/9, 0] wave vectors at 2 K. The magnetic structure of Er6FeTe2 is a flat spiral with K1=[0, 0, ±1/10] at 2 K. The magnetic entropy change for Tb6NiTe2 is ΔSm=−4.86 J/kg K at 229 K for the field change Δμ0H=0-5 T.In addition, novel Fe2P-type Gd6FeTe2, Zr6FeTe2, Hf6FeTe2, Dy6NiTe2, Zr6NiTe2 and Hf6NiTe2 phases have been obtained.  相似文献   

2.
Physical properties of NdPd2Ge2 and NdAg2Ge2, crystallizing with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric, electrical transport as well as by neutron diffraction measurements. The specific heat studies and neutron diffraction measurements were performed down to 0.30 K and 0.47 K, respectively. Both compounds exhibit antiferromagnetic ordering below TN equal to 1.5 K for NdPd2Ge2 and 1.8 K for NdAg2Ge2. Neutron diffraction data for the latter germanide indicate antiferromagnetic collinear structure described by the propagation vector k=(0.5, 0, 0.5). The Nd magnetic moments equal to 2.24(5) μB at 0.47 K are aligned along the a-axis and have the +− sequence within the crystal unit cell. For NdPd2Ge2 only very small Bragg peaks of magnetic origin were observed in the neutron diffraction patterns measured below TN, thus hampering determination of the magnetic structure. Both compounds exhibit metallic-like electrical conduction. From the specific heat data the crystal electric field (CEF) levels schemes were determined. Difference between the overall CEF splitting in the two compounds is correlated with their structural parameters.  相似文献   

3.
LSDA and LSDA+U calculations, with spin-orbit coupling (SOC) included, were performed for DyCo5 and TbCo5 intermetallic compounds. In the case of magnetic moments, LSDA-SOC calculations give results in good agreement with the experimental data. However, LSDA has shown to be unable to predict relative stabilities of ferromagnetic and ferrimagnetic configurations of the 4f and 3d spin sublattices giving the wrong result that the ferromagnetic configuration is more stable. LSDA+U method cures this problem and gives correct result. Additionally, within the accuracy of available experimental data, the corresponding effective exchange fields are in reasonable agreement with experiment.  相似文献   

4.
The magnetic data of RE2MnGe6 (RE = La, Ce) and YMn0.3Ge2 are reported. La2MnGe6 and Ce2MnGe6 crystallize in the orthorhombic Ce2CuGe6 structure type, space group Amm2 (No. 38). The non-stoichiometric YMn0.3Ge2 compound crystallizes with the orthorhombic CeNiSi2-type structure (space group Cmcm (No. 36)). The studied RE2MnGe6 (RE = La, Ce) intermetallics are characterized by ferromagnetic properties with Curie temperatures 177 (La) and 150 K (Ce), respectively. For YMn0.3Ge2 the low-field magnetic measurements indicate the antiferromagnetic property below 395 K with the small ferromagnetic component. The values of the magnetic moments in the ordered state indicate the ferromagnetic ordering in La2MnGe6 and complex magnetic order with the ferromagnetic component in YMn0.3Ge2 and Ce2MnGe6. The hysteresis loop and values of the coercivity field indicate that these compounds are soft magnetic materials.  相似文献   

5.
We calculated the molecular field coefficients, nFeFe and nRFe (R=Sm, Gd, Tb, Ho and Tm), for R2Fe17−xGax and the values of nFeFe and nSmFe for R2Fe17−xTx (T=Al and Si) using the experimental values of the Curie temperature. The values of nFeFe increase in spite of the decrease of μFe for 0?x?5. The values of nSmFe have large values when the magnetic anisotropy is axial. For 6?x?8, the values of nFeFe, nHoFe and nTmFe increase largely, which is related to the change of the easy magnetization direction. For Y2Fe17−xTx (T=Ga and Al), the values of nFeFe have a maximum value with increasing those of μFe. With increasing V−1, the values of nFeFe have a maximum value around the same value of V−1 for Y2Fe17−xTx (T=Ga and Al). For Y2Fe17−xSix, the values of nFeFe increase with increasing V−1.  相似文献   

6.
The magnetic and transport properties of ternary rare-earth chromium germanides RCr0.3Ge2 (R=Y and Tb-Er) have been determined. X-ray and neutron diffraction studies indicate that these compounds have the CeNiSi2-type structure (space group Cmcm) [1]. Magnetic measurements reveal the antiferromagnetic ordering below TN equal to 18.5 K (R=Tb), 11.8 K (Dy), 5.8 K (Ho) and 3.4 K (Er). From the neutron diffraction data the magnetic structures have been determined. For TbCr0.3Ge2 and DyCr0.3Ge2 at low temperatures the magnetic ordering can be described by two vectors k1=(,0,0) and k2=(,0,), and k1=(,0,0) and k2=(,0,), respectively. In HoCr0.3Ge2 and ErCr0.3Ge2 the ordering can be described by one propagation vector equal to (,,0) and (0,0,0.4187(2)), respectively. In DyCr0.3Ge2 some change in the magnetic ordering is observed at Tt=5.1 K. In temperature range from Tt to TN the magnetic ordering is given by one propagation vector k=(,0,0). YCr0.3Ge2 is a Pauli paramagnet down to 1.72 K which suggests that in the entire RCr0.3Ge2 series the Cr atoms do not carry magnetic moments. All compounds studied exhibit metallic character of the electrical conductivity. The temperature dependencies of the lattice parameters reveal strong magnetostriction effect at the respective Nèel temperatures.  相似文献   

7.
A new series of rare earth compounds with stoichiometry RMgSi2 (R=La, Ce, Pr, Nd) is reported. The single crystal X-ray diffraction showed that CeMgSi2, which melts congruently at 1200 °C, crystallizes in a new tetragonal structure type (I41/amd, tI32, a=4.2652(4) Å, c=36.830(4) Å, Z=8; wR2=0.042 (19 parameters, 393F02), R1=0.018 (297F0>4σF0). The crystal structure of CeMgSi2 can be formally built up by alternating along the z direction four CeMg2Si2-type CeMg2Si2 slabs with four AlB2-type CeSi2 slabs, one after the other. The structural model obtained from a CeMgSi2 single crystal has been confirmed for the La, Pr and Nd homologous compounds by means of Rietveld refinement. The trend of the unit-cell parameters, plotted versus the R3+ ionic radius, shows a linear behaviour, which strongly suggests a trivalent state for the Ce atoms. An analysis of the features of this new structure is reported, in comparison with the other known CeMg2Si2/AlB2-type linear intergrowth compounds.  相似文献   

8.
A large magnetocaloric (MCE) effect has been observed for the ternary compound DyCo3B2. This material shows the magnetic ordering below TC = 22 K for H = 0 T. MCE has been determined based on the isothermal magnetization curves measurements and the isomagnetic heat capacity dependence on temperature. The maximum magnetic entropy change −ΔSM = 17.5 J kg−1K−1 and the adiabatic temperature change ΔTad = 14 K have been observed in the neighborhood of the magnetic phase transition at the magnetic field change of 9 T. The analysis of the magnetic contribution to the specific heat indicates on the important role of the crystal electric field and the anisotropy for the properties of the DyCo3B2 compound.  相似文献   

9.
Phase equilibria and crystal structures of ternary compounds were determined in the systems Ce-Pd-B and Yb-Pd-B at 850 °C in the concentration ranges up to 45 and 33 at% of Ce and Yb, respectively, employing X-ray single crystal and powder diffraction. Phase relations in the Ce-Pd-B system at 850 °C are governed by formation of extended homogeneity fields, τ2-CePd8B2−x (0.10<x<0.48); τ3-Ce3Pd25−xB8−y (1.06<x<1.87; 2.20<y<0.05), and CePd3Bx (0<x<0.65) the latter arising from binary CePd3. Crystallographic parameters for the new structure type τ2-CePd8B2−x (space group C2/c, a=1.78104(4) nm, b=1.03723(3) nm, c=1.16314(3), β=118.515(1)° for x=0.46) were established from X-ray single crystal diffraction. The crystal structures of τ2-CePd8B2−x and τ3-Ce3Pd25−xB3−y are connected in a crystallographic group-subgroup relationship. Due to the lack of suitable single crystals, the novel structure of τ1-Ce6Pd47−xB6 (x=0.2, C2/m space group, a=1.03594(2) nm, b=1.80782(3) nm, c=1.01997(2) nm, β=108.321(1)°) was determined from Rietveld refinement of X-ray powder diffraction data applying the structural model obtained from single crystals of homologous La6Pd47−xB6 (x=0.19) (X-ray single crystal diffraction, new structure type, space group C2/m, a=1.03988(2) nm, b=1.81941(5) nm, c=1.02418(2) nm, β=108.168(1)°).The Yb-Pd-B system is characterized by one ternary compound, τ1-Yb2Pd14B5, forming equilibria with extended solution YbPd3Bx, YbB6, Pd5B2 and Pd3B. The crystal structures of both Yb2Pd14B5 and isotypic Lu2Pd14B5 were determined from X-ray Rietveld refinements and found to be closely related to the Y2Pd14B5-type (I41/amd). The crystal structure of binary Yb5Pd2−x (Mn5C2-type) was confirmed from X-ray single crystal data and a slight defect on the Pd site (x=0.06) was established.The three structures τ1-Ce6Pd47−xB6, τ2-CePd8B2−x and τ3-Ce3Pd25−xB8−y are related and can be considered as the packings of fragments observed in Nd2Fe14B structure with different stacking of common structural blocks.Physical properties for Yb2Pd13.6B5 (temperature dependent specific heat, electrical resistivity and magnetization) yielded a predominantly Yb-4f13 electronic configuration, presumably related with a magnetic instability below 2 K. Kondo interaction and crystalline electric field effects control the paramagnetic temperature domain.  相似文献   

10.
Single crystals of Zn1−xSbxCr2−x/3Se4 based on the ZnCr2Se4 spinel, which is known to exhibit interesting magnetic and electronic transport properties, have been prepared by solid state reaction from the appropriate selenides. Three compounds of different Sb content (x=0.11, 0.16, and 0.20) were studied by X-ray diffraction, X-ray photoelectron scattering technique and macroscopic magnetic measurements with the aim to determine (i) stability of the cubic symmetry and (ii) influence of the Sb admixture on the magnetic properties. The results show that the Sb3+ and Zn2+ ions share the tetrahedral sites in the spinel structure, while the Cr3+ions carrying magnetic moments, are located in the octahedral sites. The X-ray photoelectron spectroscopy (XPS) data indicate that in this series of compounds the chromium ions have a 3d3 electronic configuration. The three samples studied order antiferromagnetically at low temperatures, with the magnetic characteristics being hardly altered with respect to those reported for the parent ZnCr2Se4 compound.  相似文献   

11.
The title compounds have been prepared as polycrystalline powders by thermal treatments of stoichiometric mixtures of R2O3 and MoO3 in air. The room-temperature crystal structure for all the series has been refined from high-resolution neutron powder diffraction data. All the phases are isostructural (space group C2/c, Z=8) with the polymorph α-R2MoO6, typified by Sm2MoO6. The structure contains four zigzag, one-dimensional MoO5 polyhedral rows per unit cell, running through the RO8 polyhedral framework along the [001] direction. MoO5 form discrete units (i.e. do not share common oxygen), with Mo-O distances ranging from 1.77 to 2.24 Å, although the oxygen coordination can be extended to distances of about 3.1 Å, giving rise to strongly distorted MoO8 scalenohedra. Thus, MoO8 and RO8 polyhedra are fully ordered in R2MoO6 compounds, which in fact can be considered as superstructures of fluorite (M3O6), containing 24 MO2 fluorite units per unit cell, with unit-cell parameters related to that of cubic fluorite ( Å). A bond valence study demonstrates that the present crystal structure is especially stable for small rare-earth cations, and becomes more unstable when the R3+ size increases, thus explaining the observed preference of the large rare-earth molybdates for polymorphs β and γ with the same stoichiometry.  相似文献   

12.
The ternary rare-earth chromium germanides RECrxGe2 (RE=Sm, Gd-Er) have been obtained by reactions of the elements, either in the presence of tin or indium flux, or through arc-melting followed by annealing at 800 °C. The homogeneity range is limited to 0.25?x?0.50 for DyCrxGe2. Single-crystal and powder X-ray diffraction studies on the RECr0.3Ge2 members revealed that they adopt the CeNiSi2-type structure (space group Cmcm, Z=4, a=4.1939(5)-4.016(2) Å, b=16.291(2)-15.6579(6) Å, c=4.0598(5)-3.9876(2) Å in the progression for RE=Sm to Er), which can be considered to be built up by stuffing transition-metal atoms into the square pyramidal sites of a “REGe2” host with the ZrSi2-type structure. (The existence of YbCr0.3Ge2 is also implicated.) Only the average structure was determined here, because unusually short Cr-Ge distances imply the development of a superstructure involving distortions of the square Ge net. Magnetic measurements on RECr0.3Ge2 (RE=Gd-Er) indicated that antiferromagnetic ordering sets in below TN (ranging from 3 to 17 K), with additional transitions observed at lower temperatures for the Tb and Dy members.  相似文献   

13.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

14.
Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P212121, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P212121 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd3MoO7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm3MoO7 and the analysis of the magnetic specific heat indicate a “two-step” antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO7 were compared with the magnetic properties and structural transitions of Ln3MO7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).  相似文献   

15.
Gd4Co2Mg3 (Nd4Co2Mg3 type; space group P2/m; a=754.0(4), b=374.1(1), c=822.5(3) pm and β=109.65(4)° as unit cell parameters) was synthesized from the elements by induction melting in a sealed tantalum tube. Its investigation by electrical resistivity, magnetization and specific heat measurements reveals an antiferromagnetic ordering at TN=75(1) K. Moreover, this ternary compound presents a metamagnetic transition at low critical magnetic field (Hcr=0.93(2) T at 6 K) and exhibits a magnetic moment of 6.3(1) μB per Gd-atom at 6 K and H=4.6 T. Due to this transition the compound shows a moderate magnetocaloric effect; at 77 K the maximum of the magnetic entropy change is ΔSM=−10.3(2) J/kg K for a field change of 0-4.6 T. This effect is compared to that reported previously for compounds exhibiting a magnetic transition in the same temperature range.  相似文献   

16.
RMn2−xFexD6 compounds were obtained by applying a deuterium pressure of several kbar to RMn2−xFex compounds for x≤0.2 and R=Y, Er. These compounds are isostructural to RMn2D6 compounds and crystallize in a K2PtCl6 type structure with a random substitution of R and half the Mn atoms in the same 8c site whereas the other Mn atoms are located on the 4a site and surrounded by six D atoms (24e site). According to neutron powder diffraction analysis the Fe atoms are preferentially substituted on the 4a site. YMn2−xFexD6 compounds are paramagnetic and their molar susceptibility follows a modified Curie-Weiss law. ErMn2−xFexD6 compounds display a ferromagnetic behavior at 2 K, but their saturation magnetization (MS∼4.0 μB/f.u.) is half that of their parent compounds (MS∼8.0 μB/f.u.). The neutron diffraction patterns of ErMn1.8Fe0.2D6 display below 13 K both ferromagnetic and antiferromagnetic short range order, which can be related to a disordered distribution of Er moments. The paramagnetic temperatures of ErMn2−xFexD6 compounds are negative and decrease versus the Fe content whereas they are positive and increase for their parent compounds.  相似文献   

17.
The magnetic structures of RSn1+xGe1−x (R=Tb, Dy, Ho and Er, x≈0.1) compounds have been determined by neutron diffraction studies on polycrystalline samples. The data recorded in a paramagnetic state confirmed the orthorhombic crystal structure described by the space group Cmcm. These compounds are antiferromagnets at low temperatures. The magnetic ordering in TbSn1.12Ge0.88 is sine-modulated described by the propagation vector k=(0.4257(2), 0, 0.5880(3)). Tb magnetic moment equals 9.0(1) μB at 1.62 K. It lies in the b-c plane and form an angle θ=17.4(2)° with the c-axis. This structure is stable up to the Nèel temperature equal to 31 K. The magnetic structures of RSn1+xGe1−x, where R are Dy, Ho and Er at low temperatures are described by the propagation vector k=(1/2, 1/2, 0) with the sequence (++−+) of magnetic moments in the crystal unit cell. In DySn1.09Ge0.91 and HoSn1.1Ge0.9 magnetic moments equal 7.25(15) and 8.60(6) μB at 1.55 K, respectively. The moments are parallel to the c-axis. For Ho-compound this ordering is stable up to TN=10.7 K. For ErSn1.08Ge0.92, the Er magnetic moment equals 7.76(7) μB at T=1.5 K and it is parallel to the b-axis. At Tt=3.5 K it tunes into the modulated structure described by the k=(0.496(1), 0.446(4), 0). With the increase of temperature there is a slow decrease of kx component and a quick decrease of ky component. The Er magnetic moment is parallel to the b-axis up to 3.9 K while at 4 K and above it lies in the b-c plane and form an angle 48(3)° with the c-axis. In compounds with R=Tb, Ho and Er the magnetostriction effect at the Nèel temperature is observed.  相似文献   

18.
Two structures, all consisting of alternative stacking of hexagonal perovskite layer and graphite-like Ca2O layer, were identified in Ln2Ca2MnO7 systems (Ln=La, Nd and Sm). La2Ca2MnO7 (1), crystallizing in the space group with the lattice constants a=5.62231(7)  Å and c=17.3192(4) Å, contains almost ideal close packed [LnO3] arrays. While for the smaller rare earth cations, e.g., Nd2Ca2MnO7 (2) and Sm2Ca2MnO7 (3), the structure distorts to large unit cell (a′=2a and c′=c). Study of the substituted systems, LnLn′Ca2MnO7 (Ln or Ln′=La, Ce, Pr, Nd, Sm, Eu, Gd) and La2−xSmxCa2MnO7, shows a phase transformation from (1) to (2) at certain value of cation size. The MnO6 octahedra in these compounds are isolated, thus the magnetic property is mainly paramagnetic.  相似文献   

19.
The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI3 and graphite, heated at 900-950 °C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln12(C2)3I17-type compounds (C 2/c, a=19.610(1) and 19.574(4) Å, b=12.406(2) and 12.393(3) Å, c=19.062(5) and 19.003(5) Å, β=90.45(3)° and 90.41(3)°, for Pr12(C2)3I17 and Nd12(C2)3I17, respectively). All compounds contain infinite zigzag chains of C2-centered metal atom octahedra condensed by edge-sharing into the [tcc] sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd12(C2)3I17 sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln3+)12(C26-)3(I)17(e) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd12(C2)3I17, Gd12(C2)3I17 and Dy12(C2)3I17 indicate the coexistence of competing magnetic interactions leading to spin freezing at Tf=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at TN=25 and 29 K, respectively. For Dy12(C2)3I17, a metamagnetic transition is observed at a critical magnetic field H≈25 kOe.  相似文献   

20.
We describe the preparation, structure determination and magnetic properties of two Ba perovskites containing rare-earth cations at the B-sublattice. Ba3Ln2MoO9 (Ln=Ho3+ and Er3+) were synthesized by ceramic procedures. Joint X-ray (XRPD) and neutron (NPD) powder diffraction refinements were carried out to analyse the crystal structure. At room temperature, both phases are tetragonal, space group I4/mcm, Z=4. Ln and Mo atoms are found to be distributed at random over the octahedral sites of the perovskites. Magnetic measurements at 0.1 T show that both samples are paramagnetic between 3 and 300 K, following a Curie-Weiss law. M vs. H curves show a region of paramagnetic behaviour and above 2.5 T a magnetic saturated system is observed. Finally, the temperature evolution of the NPD patterns of Ba3Ho2MoO9 reveals the absence of long-range magnetic ordering down to 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号