首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The atomic geometries, electronic structures, and formation energies of neutral nitrogen im-purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri-ties are always deep acceptors, thus having no contributions to p-type conductivity. Among all the neutral nitrogen impurities, nitrogen substituting on an oxygen site has the lowest formation energy and the shallowest acceptor level, while nitrogen substituting on a zinc site has the second-lowest formation energy in oxygen-rich conditions. Nitrogen interstitials are unstable at the tetrahedral site and spontaneously relax into a kick-out configuration. Though nitrogen may occupy the octahedral site, the concentrations will be low for the high formation energy. The charge density distributions in various doping cases are discussed, and self-consistent results are obtained.  相似文献   

2.
The NaNiO2 structure is a promising cathode material for sodium ion batteries due to its reasonably high capacity (~120 mAh/g), environmental friendliness and the low cost of required raw materials. First-principles calculations have been carried out to study the Ti ions doped NaNi1-xTixO2 (x = 0, 0.037, 0.056, 0.083 and 0.167) phases. Results show that Ti doping can lead to a higher average intercalation voltage and improved electronic conductivity. The optimized NaNi0.917Ti0.083O2 sample can effectively suppress the volume change of the unit cell by 4% upon full desodiation and an increased ion mobility was found in this sample by nudged elastic band calculation. We suggest that the NaNi0.917Ti0.083O2 cathode could be a promising candidate for Na-ion batteries.  相似文献   

3.
The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na, Bi and Ti vacancy, the Na vacancy is more stable than the others.Therefore, we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered, the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated, which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results, our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably, because of taking into account adsorbed oxygen and cation vacancies.Moreover, our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.  相似文献   

4.
Magnetic properties of Cr-doped SnO2 and the effects of oxygen vacancy (VO) on the magnetic properties are examined to understand the origin of ferromagnetism in Cr-doped SnO2 and explain the observed discrepant phenomena. Cr-doped SnO2 shows a p-d hopping ferromagnetic interaction that decreases gradually with the increase in Cr-Cr distance. In Cr-doped SnO2 with VO, ferromagnetic interaction is obviously weakened. Exchange constants indicate that the ferromagnetic exchange interaction in Cr-doped SnO2 is similar to that in Co-doped SnO2, while it is similar to that in Fe-doped SnO2 and/or undoped SnO2 with tin vacancy (VSn) in the presence of VO.  相似文献   

5.
Orthorhombic OsB2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB2. An analysis of the calculated enthalpy shows that orthorhombic OsB2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 63/mmc structure (high-pressure phase) is stable for OsB2. We expect the phase transition can be further confirmed by the experimental work.  相似文献   

6.
Structural stability and electronic properties of GaX (X = N, P, As and Sb) nanowires have been investigated using first-principles based density function theory approach. Out of linear, zigzag, square and hexagon shaped configuration, the square shaped geometry is energetically most stable. The computation of lattice parameters, bulk modulus and pressure derivatives for these Ga based nanowires observes the highest bulk modulus for hexagonal shaped GaN nanowire amongst all, suggest the mechanical strength of this geometry. Electronic band structures analysis shows the semiconducting as well as metallic behavior of these nanowires.  相似文献   

7.
The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in good agreement with the experimental data. The bulk modules and the energies of zero pressure are obtained by using Murnaghan equation of states. The results show that the α-Li2Mg(NH)2 is a ground state configuration. The overlap population analysis shows that the N-Li/Mg ionic characteristics and N-H interaction of αphase are weaker than those of βphase. The valence band is dominated by the presence of N s and p states, hybridized with the H s state.  相似文献   

8.
The structural, elastic properties, electronic structure and hydrogen storage behavior of TiCrMn with a hexagonal C14 structure were investigated by the first-principles calculations within the frame work of DFT. The calculated lattice constants were consistent with the experimental values, and obtained cohesive energy and formation enthalpy showed TiCrMn is of the structural stability. These results also indicated that Mn atoms would optionally substitute on the Cr sites of TiCr2 phase to form the ternary intermetallic TiCrMn. The five independent elastic constants as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A) were calculated, and then the ductility and elastic anisotropy of TiCrMn were discussed in details. Furthermore, the electronic DOS and charge density distribution of TiCrMn were also calculated, which revealed the underlying mechanism of structural stability and chemical bonding. Finally, the binding energy of hydrogen in hydride TiCrMn(H3) was investigated, confirming the better hydrogen storage behavior of C14 Laves phase TiCrMn.  相似文献   

9.
Here we report the synthesis and characterization of Cu2O nanorods doped with Mn, Ni and Co transition metal ions and the study of their magnetic properties. Synthesis of the nanorods was carried out by the modified polyol method. Powder X-ray diffraction patterns clearly showed them to be polycrystalline single phase material. They exhibited ferromagnetic behavior at room temperature, however no such behavior was observed for the reference undoped sample, which indicated that unintentionally introduced magnetic impurities were not responsible for the observed phenomenon. Ferromagnetic behavior was found to be dependent on the dopant concentration and increased consistently with its increment in the material. The total magnetic moments contribution was calculated for the dopant concentration and was found to be insignificant to account for the observed ferromagnetism, therefore it was suggested that ferromagnetism could have conjured up from the induced magnetic moment in the defects created as cation vacancies in the material. The presence of the defects was supported by the room temperature photoluminescence study which showed that intensity of the peaks was dependent on the dopant concentration and increased consistently with it. There was strong correlation between the magnitude of the photoluminescence peak and the observed ferromagnetic property in the doped samples.  相似文献   

10.
Based on first-principles electronic structure calculations we find that the bridging oxygen vacancies on the (1 1 0) surface is more favorable and may be responsible for the unexpected ferromagnetism in undoped rutile TiO2. Our results show that the ferromagnetism largely originates from the d orbitals of low-charge-state Ti ions converted from Ti4+ ions induced by the surface oxygen vacancies. The second-nearest neighbors of these ions (fivefold coordinated Ti) also contribute to the total magnetic moments. The spins induced by the local oxygen vacancies form a ferromagnetic arrangement.  相似文献   

11.
Studies by fluorine bomb calorimetry that lead to the evaluation of thermodynamic properties of group-III nitrides are described. Results of the studies of the standard molar enthalpy of formation ΔfHm0 of two BN polymorphic forms and initial experiments on the combustion of GaN are presented.  相似文献   

12.
The crystal structures of the triangular lattice, layered anhydrous alums KCr(SO4)2, RbCr(SO4)2 and KAl(SO4)2 are characterized by X-ray and neutron powder diffraction (NPD) at temperatures between 1.4 and 773 K. The compounds all crystallize in the space group , with octahedral coordination of the trivalent cations. In all cases, small amounts of disorder in the stacking of the triangular layers of corner sharing MO6 octahedra and SO4 tetrahedra is seen, with the MO6−SO4 network rotated in opposite directions between layers. The electron diffraction study of KCr(SO4)2 supports this model, which on an average can be taken to imply trigonal prismatic coordination for the M3+ ions; as was previously reported for the prototype anhydrous alum, KAl(SO4)2. The temperature-dependent magnetic susceptibilities for ACr(SO4)2 (A=K, Rb, Cs) indicate the presence of predominantly ferromagnetic interactions. Low-temperature powder neutron diffraction reveals that the magnetic ordering is ferromagnetic in-plane, with antiferromagnetic ordering between planes below 3 K.  相似文献   

13.
14.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构. 由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷, 本文也采用DFT+U(Hubbard 系数)方法对模型的电子结构进行了计算. DFT的计算结果表明N掺杂后, N 2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低, 而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响. DFT+U的计算却给出截然不同的结果, N掺杂并没有导致带隙能的降低, 而只是在带隙中引入一个孤立的杂质能级, 反而F掺杂以及氧空位的引入带来明显的带隙能降低. DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

15.
热处理氧化石墨相氮化碳(g-C_3N_4)材料产生氮缺陷、提升其光催化制氢性能的研究备受关注,但其N空位浓度高且不可控、一定程度破坏g-C_3N_4晶体结构,降低g-C_3N_4的结晶度,导致光生电子-空穴对复合率高,致使其光催化制氢效率较低。基于上述问题,本研究以二氰二胺为前驱体制备了g-C_3N_4,与不同含量的尿素混合,在空气中加热快速热处理,通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试手段,对其物相组成、微观形貌、光学吸收等进行了表征,在可见光条件下对样品进行了光催化制氢性能测试,研究了尿素的加入对热处理后g-C_3N_4材料的N空位浓度、结晶度及光催化制氢性能的影响。研究表明,尿素的加入降低了N空位的浓度,且提升了其结晶度。在优化的尿素添加量下,g-C_3N_4的可见光光催化制氢速率为6.5μmol·h-1,是没有添加尿素处理的样品的3倍。该研究结果表明,利用尿素原位分解产生的NH_3,可以抑制g-C_3N_4热处理过程中氮原子的氧化程度、实现调控N空位浓度,同时提高了结晶度,最终提升了其光催化制氢性能。  相似文献   

16.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构.由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷,本文也采用DFT+U(Hubbard系数)方法对模型的电子结构进行了计算.DFT的计算结果表明N掺杂后,N2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低,而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响.DFT+U的计算却给出截然不间的结果,N掺杂并没有导致带隙能的降低,而只是在带隙中引入一个孤立的杂质能级,反而F掺杂以及氧空位的引入带来明显的带隙能降低.DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

17.
Two isotypic borophosphates MBPO4(OH)2 (M=Mg, Ni) have been hydrothermally synthesized and structurally characterized by powder X-ray diffraction in the space group P3121. Nickel (or magnesium) atoms are octahedrally coordinated. The octahedra share edges to form helix chains around the three-fold screw-axis. Boron and phosphorus atoms are both tetrahedrally coordinated. The BO4 and PO4 tetrahedra are alternately connected, forming vierer-single chains. These two kinds of chains are intersected in the three-dimensional framework structure. NiBPO4(OH)2 can be considered as a quasi-one-dimensional magnet because the shortest Ni2+-Ni2+ distance within the helix chain is about 3.187(1) Å, while the shortest inter-chain connection of the nickel ions is through a BO4 group (5.650(1) Å). Both dc and alternating current (ac) susceptibilities and isothermal magnetization have been measured on powder sample. The intra- and inter-chain interactions are proved to be both ferromagnetic, and a long-range ordering is established below 2.2 K in NiBPO4(OH)2.  相似文献   

18.
First-principles calculations of undoped HfO(2) and cobalt-doped HfO(2) have been carried out to study the magnetic properties of the dielectric material. In contrast to previous reports, it was found that the native defects in HfO(2) could not induce strong ferromagnetism. However, the cobalt substituting hafnium is the most stable defect under oxidation condition, and the ferromagnetic (FM) coupling between the cobalt substitutions is favorable in various configurations. We found that the FM coupling is mediated by the threefold-coordinated oxygen atoms in monoclinic HfO(2) and could be further enhanced in electron-rich condition.  相似文献   

19.
We present a first-principles method for the evaluation of the transmittance probability and the coherent conductance through elongated systems composed of a repeating molecular unit and terminated at both ends. Our method is based on a divide and conquer approach in which the Hamiltonian of the elongated system can be represented by a block tridiagonal matrix, and therefore can be readily inverted. This allows us to evaluate the transmittance and the conductance using first-principles electronic structure methods without explicitly performing calculations involving the entire system. A proof of concept model based on a trans-polyacetylene chain bridging two aluminum leads indicates that our divide and conquer approach is able to capture all the features appearing in the transmittance probability curves obtained by a full scale calculation.  相似文献   

20.
石墨相氮化碳的红外辅助微波法制备及光催化固氮性能   总被引:1,自引:0,他引:1  
采用红外辅助微波法制备了可见光下具有优越固氮性能的石墨相氮化碳催化剂(g-C3N4).采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附、紫外-可见光谱(UV-Vis)、荧光光谱(PL)、N2-程序升温脱附(TPD)和电子顺磁共振谱(EPR)等对催化剂进行了表征.结果表明,微波处理在催化剂表面形成许多孔状结构,增大了催化剂的比表面积,抑制了催化剂光生电子-空穴的复合;微波处理还会产生大量氮空穴,这些氮空穴一方面可以吸附并活化氮气分子,另一方面可提升电荷从催化剂到氮气分子的界面转移能力,显著提高催化剂的光催化固氮性能.采用红外辅助微波法制备的g-C3N4催化剂比采用单纯微波法制备的催化剂具有更多的氮空穴,表现出更高的光催化固氮性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号