首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new lanthanum copper telluride La3Cu5−xTe7 has been obtained by annealing the elements at 1073 K. Single-crystal X-ray diffraction studies revealed that the title compound crystallizes in a new structure type, space group Pnma (no. 62) with lattice dimensions of a=8.2326(3) Å, b=25.9466(9) Å, c=7.3402(3) Å, V=1567.9(1) Å3, Z=4 for La3Cu4.86(4)Te7. The structure of La3Cu5−xTe7 is remarkably complex. The Cu and Te atoms build up a three-dimensional covalent network. The coordination polyhedra include trigonal LaTe6 prisms, capped trigonal LaTe7 prisms, CuTe4 tetrahedra, and CuTe3 pyramids. All Cu sites exhibit deficiencies of various extents. Electrical property measurements on a sintered pellet of La3Cu4.86Te7 indicate that it is a p-type semiconductor in accordance with the electronic structure calculations.  相似文献   

2.
The compound CsAgSb4S7 has been synthesized by the reaction of the elements in a Cs2S3 flux at 773 K. The compound crystallizes in a new structure type with eight formula units in space group C2/c of the monoclinic system in a cell at 153 K of dimensions , , , β=97.650(1)°, and . The structure contains two-dimensional layers separated by Cs atoms. Each layer is built from edge-sharing one-dimensional and chains. Each Ag atom is tetrahedrally coordinated to four S atoms. Each Sb3+ center is pyramidally coordinated to three S atoms to form an SbS3 group. CsAgSb4S7 is insulating with an optical band gap of 2.04 eV. Extended Hückel calculations indicate that the band gap in CsAgSb4S7 is dominated by the Sb 5s and S 3p states above and below the Fermi level.  相似文献   

3.
Ytterbium(III) tetraaquatris(tetraoxorhenate(VII)), Yb(ReO4)3(H2O)4, was prepared by the reaction of Yb2O3 with concentrated HReO4 at room temperature. The colorless compound crystallizes in the monoclinic space group P21/n (No. 14) with four formula units per unit cell (a=730.5(1) pm, b=1484.1(5) pm, c=1311.7(2) pm, β=93.69(1)). The main feature of the crystal structure is the formation of chains 1[Yb(H2O)4(ReO4)2(ReO4)2/2] running along [100]. This arrangement shows distorted cubic antiprisms of [Yb(H2O)4(ReO4)2(ReO4)2/2] interconnected via the ReO4 ligands. The chains are held together in the solid by hydrogen bonding. The compound is paramagnetic and follows the Curie-Weiss law with a magnetic moment of 4.0 μB at room temperature and θ=−42 K. It loses hydration water in two steps at temperatures below 400 K; decomposition begins at 850 K, forming Yb2O3(Re2O7)2 and is complete at 1350 K leading to Yb2O3 as final product.  相似文献   

4.
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4.  相似文献   

5.
RbVSe2 has been synthesized at 773 K through the reaction of V and Se with a Rb2Se3 reactive flux. The compound crystallizes in the orthorhombic space group D2h24-Fddd with 16 formula units in a cell of dimensions , , and at . The structure possesses infinite one-dimensional chains of edge-sharing VSe4 tetrahedra separated from the Rb+ ions. These chains distort slightly to chains. The V-V distance within these chains is 2.8362(4) Å. First-principles total energy calculations indicate that a non-magnetic configuration for the V3+ cations is the most stable.  相似文献   

6.
The new vanadate BiMgVO5 has been prepared and its structure has been determined by single crystal X-ray diffraction: space group P21/n, , , , β=107.38(5)°, wR2=0.0447, R=0.0255. The structure consists of [Mg2O10] and [Bi2O10] dimers sharing their corners with [VO4] tetrahedra. The ranges of bond lengths are 2.129-2.814 Å for Bi-O; 2.035-2.167 Å for Mg-O and 1.684-1.745 Å for V-O. V-O bond lengths determined from Raman band wavenumbers are between 1.679 and 1.747 Å. An emission band overlapping the entire visible region with a maximum around 650 nm is observed.  相似文献   

7.
A new potassium bismuth phosphate-molybdate K2Bi(PO4)(MoO4) has been synthesized by the flux method and characterized by single-crystal and powder X-ray diffraction, IR spectroscopic studies. The compound crystallizes in the orthorhombic system with the space group Ibca and the cell parameters: a=19.7037(10), b=12.4752(10), c=7.0261(10). This phase exhibits an original layered structure, in which the [Bi(PO4)(MoO4)] layers consist of [Bi2Mo2O18] chains linked through single PO4 tetrahedra. The K+ cations interleaved between these layers exhibit a monocapped distorted cubic coordination.  相似文献   

8.
An alkali metal-rare earth phosphate crystal of NaLa(PO3)4 has been synthesized by high temperature solid-state reactions and structurally characterized by single crystal X-ray diffraction analysis, for the first time. It crystallizes in the monoclinic P21/n space group with lattice parameters: a=7.2655(3), b=13.1952(5), , β=90.382°(1), , Z=4. It is composed of LaO8 polyhedra and [(PO3)4]4− chains sharing oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The IR spectrum, absorption spectrum, and emission spectrum of the compound have been investigated. The absorption edge is located at 340 nm (3.60 eV). The calculated total and partial densities of states indicate that the top of valence bands is mainly built upon O-2p states which interact with P-3p states via σ (P-O) interactions, and the low conduction bands mostly originates from unoccupied La-5d states. The P-O bond is mostly covalent in character, and the ionic character of the Na-O bond is larger than that in the La-O bond.  相似文献   

9.
The (NH4)0.80Li0.20[Fe(AsO4)F] compound has been synthesized under mild hydrothermal conditions. The compound crystallize in the orthorhombic Pna21 space group, with cell parameters a=13.352(9), b=6.7049(9), c=10.943(2) Å and Z=8. The compound belongs to the KTiO(PO4) structure type, with chains alternating FeO4F2 octahedra and AsO4 tetrahedra, respectively, running along the “a” and “b” crystallographic axes. The diffuse reflectance spectrum in the visible region shows the forbidden electronic transitions characteristic of the Fe(III) d5-high spin cation in slightly distorted octahedral geometry. The Mössbauer spectrum at room temperature is characteristic of iron (III) cations. The ESR spectra, carried out from room temperature to 200 K, remain isotropic with variation in temperature; the g-value being 1.99(1). Magnetic measurements indicate the predominance of strong antiferromagnetic interactions.  相似文献   

10.
Crystals of NaMg3Al(MoO4)5 doped with 0.5% Cr3+ ions have been synthesized and characterized by a single-crystal X-ray structure analysis and IR, Raman, electron absorption and luminescence spectroscopic studies. It has been shown that NaMg3Al(MoO4)5 crystallizes in the structure, with a=6.8744(8) Å, b=6.9342(7) Å, c=17.605(2) Å, α=87.788(8)°, β=87.727(9)°, γ=78.501(9)°, Z=2. The characteristic feature of the structure is its enormously large thermal displacement parameter for sodium, even at 105 K. The IR and Raman spectra indicate significant interactions between the MoO42− ions in the structure. The electron absorption, excitation and luminescence studies have shown that there are at least two different sites of incorporated Cr3+ ions in the NaMg3Al(MoO4)5 crystal structure. They differ themselves by strength of crystalline field. One of them is characterized by Cr3+ in low ligand field and 4T24A2 emission whereas the second is characterized by higher strength of the crystal field and dominant 2E4A2 emission. Temperature-dependent studies show that the compound does not exhibit any phase transition.  相似文献   

11.
An alkali-metal indium phosphate crystal, K3In3P4O16, has been synthesized by a high-temperature solution reaction and exhibits a new structure in the family of the alkali-metal indium phosphates system. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group P21/n, and the following cell parameters: a=9.7003(18), b=9.8065(18), c=15.855(3) Å, β=90.346(3)°, V=1508.2(5) Å3, Z=4, R=0.0254. It possesses three-dimensional anionic frameworks with tunnels occupied by K+ cations running along the a-axis. The emission and absorption spectra of the compound have been investigated. Additionally, the calculations of energy band structure, density of states, dielectric constants and refractive indexes have been performed with the density functional theory method. Also, the two-photon absorption spectrum is simulated by two-band model. The obtained results tend to support the experimental data.  相似文献   

12.
The high-pressure iron borate α-FeB2O4 was synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. The monoclinic iron borate crystallizes with eight formula units in the space group P21/c with the lattice parameters a=715.2(2), b=744.5(2), c=862.3(2) pm, and β=94.71(3)°. The compound is built up exclusively from corner-sharing BO4-tetrahedra, isotypic to the monoclinic phases β-SrGa2O4, CaAl2O4-II, and CaGa2O4. Additionally, the structure is closely related to the orthorhombic compound BaFe2O4. The structure consists of layers of six-membered rings, which are interconnected to a three-dimensional network. The iron cations are coordinated by six and seven oxygen atoms. Next to synthesis and crystal structure of the new high-pressure borate, structural coherences to other structure types are discussed.  相似文献   

13.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

14.
The new ternary alkali tantalum polysulfide K2Ta2S10 has been synthesized by reacting TaS2 with an in situ formed melt of K2S3 and S at 773 K. The compound crystallizes with four formula units in the monoclinic space group P21/n (No. 14) with lattice parameters of . The structure contains two different zigzag chain anions [TaS5], running parallel to the crystallographic b-axis separated by potassium cations. The two crystallographically independent tantalum atoms are in a distorted bi-capped trigonal prismatic environment of eight sulfur atoms which was never observed before. The TaS8 polyhedra share three S atoms on each side to form the anionic chains. The compound was characterized with FIR and Raman spectroscopy.  相似文献   

15.
Ag2Nb[P2S6][S2] (1) was obtained from the direct solid state reaction of Ag, Nb, P2S5 and S at 500 °C. KAg2[PS4] (2) was prepared from the reaction of K2S3, Ag, Nd, P2S5 and extra S powder at 700 °C. Compound 1 crystallizes in the orthorhombic space group Pnma with a=12.2188(11), b=26.3725(16), c=6.7517(4) Å, V=2175.7(3) Å3, Z=8. Compound 2 crystallizes in the non-centrosymmetric tetragonal space group with lattice parameters a=6.6471(7), c=8.1693(11) Å, V=360.95(7) Å3, Z=2. The structure of Ag2Nb[P2S6][S2] (1) consists of [Nb2S12], [P2S6] and new found puckered [Ag2S4] chains which are along [001] direction. The Nb atoms are located at the center of distorted bicapped trigonal prisms. Two prisms share square face of two [S22−] to form one [Nb2S12] unit, in which Nb-Nb bond is formed. The [Nb2S12] units share all S2− corners with ethane-like [P2S6] units to form 14-membered rings. The novel puckered [Ag2S4] chains are composed of distorted [AgS4] tetrahedra and [AgS3] triangles that share corners with each other. These chains are connected with [P2S6] units and [Nb2S12] units to form three-dimensional frame work. The structural skeleton of 2 is built up from [AgS4] and [PS4] tetrahedra linked by corner-sharing. The three-dimensional anionic framework contains orthogonal, intersecting tunnels directed along [100] and [010]. This compound possesses a compressed chalcopyrite-like structure. The structure is compressed along [001] and results from eight coordination sphere for K+. Both compounds are characterized with UV/vis diffuse reflectance spectroscopy and compound 1 with IR and Raman spectra.  相似文献   

16.
Single crystals of the strontium phosphate orthoborate metaborate, Sr10[(PO4)5.5(BO4)0.5](BO2), were grown from the melt and investigated by X-ray diffraction (space group , No. 147; a=9.7973(8) Å, c=7.3056(8) Å, V=607.29(10) Å3, Z=1). The crystal structure is closely related to apatite and contains linear metaborate groups, [BO2] (point group D∞h, B-O=1.284(11) Å) taking positions within the channels running along the three-fold inversion axis. Strontium sites are found to be fully occupied while [PO4]3− tetrahedra are partially replaced by [BO4]5− groups.  相似文献   

17.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

18.
The single crystals of lanthanum metaphosphate MLa(PO3)4 (M=Na, Ag) have been synthesized and studied by a combination of X-ray crystal diffraction and vibrational spectroscopy. The sodium and silver compounds crystallize in the same monoclinic P21/n space group ( factor group) with the following respective unit cell dimensions: a=7.255(2), b=13.186(3), , β=90.40(2)°, , Z=4 and a=7.300(5), b=13.211(9), , β=90.47(4)°, , Z=4. This three-dimensional framework is built of twisted zig-zag chains running along a direction and made up of PO4 tetrahedra sharing two corners, connected to the LaO8 and NaO7 or AgO7 polyhedra by common oxygen atoms to the chains. The infrared and Raman vibrational spectra have been investigated. A group factor analysis leads to the determination of internal modes of (PO3) anion in the phosphate chain.  相似文献   

19.
Thioantimonate compounds of [Mn(en)3]2Sb2S5 (1) and [Ni(en)3(Hen)]SbS4 (2) (en=ethylenediamine) were prepared by reaction of transition metal chloride with Sb and S8 powders under solvothermal conditions. Compound 1 consists of discrete [Sb2S5]4− anion, which is formed by corner-sharing SbS3 trigonal pyramids. Compound 2 is composed of discrete tetrahedral [SbS4]3− anion. The compounds 1 and 2 are charge compensated by [M(en)3]2+ cations, whereas in the crystal of 2 there is another counter ion of [Hen]+. The results of the synthesis suggest that the temperature, the concentration and the existing states of the starting materials and so on are important for the structure and composition of the final products. In addition, the oxidation-state of antimony might be related to the molar ratio of the reactants. Excess amount of elemental S is beneficial to the higher oxidation-state of thioantimonate (V). Compound 1 decomposes from 150°C to 350°C, while compound 2 decomposes from 200°C to 350°C remaining Sb2S3 and NiSbS as residues.  相似文献   

20.
The new hypervalent binary phase EuBi2 was obtained from high temperature solid-state reactions of the pure metal elements in welded Ta tubes under argon atmosphere. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the tetragonal space group I41/amd (No. 141) with cell parameters of , and Z=8. The structure of EuBi2 is isotypic with HfGa2 and features 1D Bi zigzag anionic chains along both a- and b-axes and 2D Bi square sheets normal to c-axis. It can be formulated as Eu2+(Bi)chain(Bi)square.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号