首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the magnetic properties of an Fe(II) spin-crossover complex near its high spin/low spin (HS/LS) phase transition in the emulsion polymerization of trifluoroethylmethacrylate (TFEMA) using poly(vinyl alcohol) (PVA) as a protective colloid, in comparison with sodium lauryl sulfate (SLS). Morphological analysis was used to establish that the nanodispersed spin-crossover complex was incorporated into the cores of polymer particles covered with PVA shells. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiplet states such as the triplet (S = 1) and quintet (S = 2) states, and the paramagnetic state (S = 1/2), by noting a gradual shift of g-value anisotropy in the electron spin resonance (ESR) spectrum at 5 K. This was thought to have arisen from the exchange interaction as a Jahn–Teller effect in the emulsion particles. Chemical modifications such as ligand substitution, and the nature of the central metal atom in the emulsion particle, especially influenced the HS/LS phase transition.  相似文献   

2.
Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo‐) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS‐HS] to a [LS‐HS] phase with a hysteresis of 25 K. Photoexcitation at low temperature allows access to a [LS‐LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse‐LIESST (light‐induced excited spin state trapping), we also reveal a hidden hysteresis of 30 K between the hidden [LS‐LS] and [HS‐LS] phases. Moreover, we demonstrate that FeIII spin‐crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air‐stable, they are ideally suited for use in molecular electronics.  相似文献   

3.
Three tetraphenylborates of mononuclear Mn(III) cation complexes with hexadentate ligands, the products of the reaction between a N,N′-bis(3-aminopropyl)ethylenediamine and salicylaldehydes with the different haloid substitutions at the 5 or 3,5 positions, have been synthesized: [Mn(5-F-sal-N-1,5,8,12)]BPh4 ( 1 ), [Mn(3,5-diCl-sal-N-1,5,8,12)]BPh4 ( 2 ) and [Mn(3,5-Br,Cl-sal-N-1,5,8,12)]BPh4 ( 3 ). Their crystal structure, dielectric constant (ϵ) and magnetic properties have been studied. Ligand substituents have a dramatic effect on the structure and magnetic properties of the complexes. With decreasing temperature, the complex ( 1 ) shows a gradual spin crossover from the high-spin state (HS) to the HS:LS intermediate phase, followed by an abrupt transition to the low-spin state (LS) without changing the crystal symmetry. The complexes 2 and 3 are isostructural, but have fundamentally different properties. Complex 2 demonstrates two structural phase transitions related to sharp spin crossovers from the HS to the HS:LS intermediate phase at 137 K and from the intermediate phase to the LS at 87 K, while complex 3 exhibits only one spin transition from the HS to the HS:LS intermediate phase at 83 K.  相似文献   

4.
A neutral mononuclear FeIII complex [FeIII(H‐5‐Br‐thsa‐Me)(5‐Br‐thsa‐Me)]?H2O ( 1 ; H2‐5‐Br‐thsa‐Me=5‐bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three‐step spin‐crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS–2LS and 2HS–4LS, which exhibited reentrant phase‐transition behavior. This study provides a new platform for examining multistability in SCO complexes.  相似文献   

5.
The interaction at the molecular level of the spin-crossover (SCO) FeII((3,5-(CH3)2Pz)3BH)2 complex with the Au(111) surface is analyzed by means of rPBE periodic calculations. Our results show that the adsorption on the metallic surface enhances the transition energy, increasing the relative stability of the low spin (LS) state. The interaction indeed is spin-dependent, stronger for the low spin than the high spin (HS) state. The different strength of the Fe ligand field at low and high temperature manifests on the nature, spatial extension and relative energy of the states close to the Fermi level, with a larger metal–ligand hybridization in the LS state. This feature is of relevance for the differential adsorption of the LS and HS molecules, the spin-dependent conductance, and for the differences found in the corresponding STM images, correctly reproduced from the density of states provided by the rPBE calculations. It is expected that this spin dependence will be a general feature of the SCO molecule–substrate interaction, since it is rooted in the different ligand field of Fe site at low and high temperatures, a common hallmark of the FeII SCO complexes. Finally, the states involved in the LIESST phenomenon has been identified through NEVPT2 calculations on a model reaction path. A tentative pathway for the photoinduced LS→HS transition is proposed, that does not involve the intermediate triplet states, and nicely reproduces both the blue laser wavelength required for the activation, and the wavelength of the reverse HS → LS transition.  相似文献   

6.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

7.
Molecules exhibiting a spin‐crossover transition have been proposed for a number of applications such as molecular switches, spintronic tunable interfaces, and single molecule gates. Both the rational design of new spin‐crossover systems and the improvement of the properties of the already existing ones require a theoretical understanding of the relative energy of the high (HS) and low spin state (LS) molecules in the solid‐state. This has proved to be very challenging so far. Here, we shed some light on the importance of considering the symmetry and the geometry of the crystallographic cell to correctly evaluate the influence of the dipolar interactions on the relative energies of the molecular complex in both different spin states. Moreover, in the case of Fe(SCN)2(phen)2 dipolar interactions are found to play an important role for the stabilization of the LS complex. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Light‐induced excited spin‐state trapping (LIESST) in iron(II) spin‐crossover compounds, that is, the light‐induced population of the high‐spin (S=2) state below the thermal transition temperature, was discovered thirty years ago. For irradiation into metal–ligand charge transfer (MLCT) bands of the low‐spin (S=0) species the acknowledged sequence takes the system from the initially excited 1MLCT to the high‐spin state via the 3MLCT state within ca. 150 fs, thereby bypassing low‐lying ligand‐field (LF) states. Nevertheless, these play a role, as borne out by the observation of LIESST and reverse‐LIESST on irradiation directly into the LF bands for systems with only high‐energy MLCT states. Herein we elucidate the ultrafast reverse‐LIESST pathway by identifying the lowest energy S=1 LF state as an intermediate state with a lifetime of 39 ps for the light‐induced high‐spin to low‐spin conversion on irradiation into the spin‐allowed LF transition of the high‐spin species in the NIR.  相似文献   

9.
Spin crossover in a series of six cyanide-bridged iron(II) tetranuclear square complexes was analyzed using density functional theory (DFT) methods. As the spin crossover between the low-spin (LS) and high-spin (HS) states can occur only for two of four iron ions, we characterized energetically and structurally the [LS-LS], [HS-LS], and [HS-HS] spin-state isomers. For all studied complexes, the energy of the mixed [HS-LS] spin state does not deviate essentially from the halfway point between the energies of homogeneous spin states, thereby satisfying the conditions for an one-step transition between the [LS-LS] and [HS-HS]. This fact reflects the weak elastic coupling between the environments of transiting centers. The two-step spin transition observed in one complex can appear only due to the crystal packing effects. We also evaluated the strength of exchange coupling between the paramagnetic ions in the [HS-HS] state.  相似文献   

10.
The thermal and light induced spin transition in [Fe(0.35)Ni(0.65)(mtz)(6)](ClO(4))(2) (mtz = 1-methyl-1H-tetrazole) was studied by (57)Fe M?ssbauer spectroscopy and magnetic susceptibility measurements. In addition to the spin transition of the iron(II) complexes the compound undergoes a structural phase transition. The high-temperature structure could be determined by X-ray crystallography of the isomorphous [Fe(0.25)Ni(0.75)(mtz)(6)](ClO(4))(2) complex at room temperature. The X-ray structural analysis shows this complex to be rhombohedric, space group R&thremacr;, with a = 10.865(2) ? and c = 23.65(1) ? with three molecules in the unit cell. The transition to the low-temperature structure occurs at approximately 60 K without changing the spin state of the molecules. By subsequent heating of the complex the high-temperature structure is reached again between ca. 170 and 200 K. The spin transition behavior is strongly influenced by the structural changes, and the observed spin transition curves are completely different for the high- and low-temperature phases. In the high-temperature structure a complete and gradual spin transition between 220 and 120 K (T(1/2)(gamma(HS) = 0.5) = 185 K) is detected; the high-spin (HS) state is represented by one HS doublet in the M?ssbauer spectra. In the low-temperature structure a two-step transition curve is detected in the heating mode. About 36% of the molecules show a LS (low-spin) --> HS transition between ca 50 and 75 K. Then the HS fraction stays constant up to 150 K. A further increase in the high-spin fraction is observed at temperatures above 150 K. In this structural phase the HS state is represented by two different HS doublets in the M?ssbauer spectra. The formation of metastable HS states by making use of the LIESST effect is only possible in the low-temperature structure. By excitation of the LS molecules with green light, two different HS states are populated which show very different relaxation behavior. One HS state shows a relaxation to the LS state even at 10 K; the other HS state shows a very slow HS --> LS relaxation at 60 K (within days), leading to the HS fraction corresponding to the thermal equilibrium value.  相似文献   

11.
《Polyhedron》2007,26(9-11):1764-1772
Variable temperature magnetic susceptibility, Mössbauer spectroscopic and X-ray crystallographic studies are described on two structurally similar families of dinuclear iron(II) spin crossover (SCO) complexes of formula [Fe(NCX)(py)]2(μ-L)2, where L is either a 3,5-bis(2-pyridyl)-pyrazolate bridging ligand, bpypz, examples of which have been earlier reported by Kaizaki and coworkers, or a corresponding 3,5-bis(2-pyridyl)-1,2,4-triazolate, bpytz. Compounds synthesised were [Fe(NCS)(py)]2(μ-bpypz)2 (1), [Fe(NCSe)(py)]2(μ-bpypz)2 (2), [Fe(NCS)(py)]2(μ-bpytz)2 (3), [Fe(NCSe)(py)]2(μ-bpytz)2 (4), [Fe(NCBH3)(py)]2(μ-bpytz)2 (5). The crystal and molecular structures of 1 and 3 are very similar in their HS–HS forms (HS = high spin d6). In contrast to reported SCO behaviour for precipitated samples of 1, also repeated here, crystals of 1 show only HS–HS behaviour with no spin crossover transition. Complex 3 likewise displays HS–HS magnetism, with very weak antiferromagnetic coupling. Compound 5 displays a well resolved two-step, full spin transition from HS–HS to LS–LS states while compound 2 shows a one step transition. The Mössbauer data for 2 and 5 show unusual features at low temperatures.  相似文献   

12.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

13.
The unprecedented bimetallic 2D coordination polymer {Fe[(Hg(SCN)3)2](4,4′‐bipy)2}n exhibits a thermal high‐spin (HS)?low‐spin (LS) staircase‐like conversion characterized by a multi‐step dependence of the HS molar fraction γHS. Between the fully HS (γHS=1) and LS (γHS=0) phases, two steps associated with different ordering appear in terms of spin‐state concentration waves (SSCW). On the γHS≈0.5 step, a periodic SSCW forms with a HS‐LS‐HS‐LS sequence. On the γHS≈0.34 step, the 4D superspace crystallography structural refinement reveals an aperiodic SSCW, with a HS‐LS sequence incommensurate with the molecular lattice. The formation of these different long‐range spatially ordered structures of LS and HS states during the multi‐step spin‐crossover is discussed within the framework of “Devil's staircase”‐type transitions. Spatially modulated phases are known in various types of materials but are uniquely related to molecular HS/LS bistability in this case.  相似文献   

14.
A 2D layered spin crossover complex, [FeIIH3L(Me)]Cl.I3, has been synthesized from the reaction of FeIIICl3, a tripod ligand (H3LMe = tris[2-(((2-methylimidazoyl-4-yl)methylidene)amino)ethyl]amine), and NaI in methanol. The compound showed an abrupt spin transition between the HS (S = 2) and LS (S = 0) states at T(1/2) = 110 K without hysteresis. The crystal structures of the HS and LS states were determined at 180 and 90 K. A 2D layered structure is composed of NH...Cl- hydrogen bonds between the Cl- ion and three neighboring imidazole groups of [FeIIH3LMe]2+. The green light irradiation at 5 K induced the LIESST effect, and the thermal relaxation process from the HS to LS state showed a sigmoid curve at T > 55 K.  相似文献   

15.
Ab initio calculations have been performed on [FeII(bpy)3]2+ (bpy=bipyridine) to establish the variation of the energy of the electronic states relevant to light‐induced excited‐state spin trapping as a function of the Fe? ligand distance. Light‐induced spin crossover takes place after excitation into the singlet metal‐to‐ligand charge‐transfer (MLCT) band. We found that the corresponding electronic states have their energy minimum in the same region as the low‐spin (LS) state and that the energy dependence of the triplet MLCT states are nearly identical to the 1MLCT states. The high‐spin (HS) state is found to cross the MLCT band near the equilibrium geometry of the MLCT states. These findings give additional support to the hypothesis of a fast singlet–triplet interconversion in the MLCT manifold, followed by a 3MLCT–HS (5T2) conversion accompanied by an elongation of the Fe? N distance.  相似文献   

16.
Due to the magnetic bistability, single-molecule spin-crossover (SCO) complexes have been considered to be the most promising building blocks for molecular spintronic devices. Here, we explore the SCO behavior and coherent spin transport properties of a six-coordinate FeN6 complex with the low-spin (LS) and high-spin (HS) states by performing extensive first-principles calculations combined with non-equilibrium Green’s function technique. Theoretical results show that the LS?HS spin transition via changing the metal-ligand bond lengths can be realized by external stimuli, such as under light radiation in experiments. According to the calculated zero-bias transmission coefficients and density of states as well as the I-V curves under small bias voltages of FeN6 SCO complex with the LS and HS states sandwiched between two Au electrodes, we find that the examined molecular junction can act as a molecular switch, tuning from the OFF (LS) state to the ON (HS) state. Moreover, the spin-down electrons govern the current of the HS molecular junction, and this observed perfect spin-filtering effect is not sensitive to the detailed anchoring structure. These theoretical findings highlight this examined six-coordinate FeN6 SCO complex for potential applications in molecular spintronics.  相似文献   

17.
High‐pressure single‐crystal X‐ray diffraction has been used to trap both the low‐spin (LS) and high‐spin (HS) states of the iron(II) Hofmann spin crossover framework, [FeII(pdm)(H2O)[Ag(CN)2]2?H2O, under identical experimental conditions, allowing the structural changes arising from the spin‐transition to be deconvoluted from previously reported thermal effects.  相似文献   

18.
The synthesis and detailed study of the new mononuclear spin crossover complex [Fe(II)H2L(2-Me)](ClO4)2 (where H2L(2-Me) = bis[((2-methylimidazol-4-yl)methylidene)-3-aminopropyl]ethylenediamine) are reported. Variable-temperature magnetic susceptibility measurements show the occurrence of a steep spin crossover centered at 171.5 K with a hysteresis loop of ca. 5 K width (T(/2)(increasing) = 174 K and T(1/2)(decreasing) = 169 K, for increasing and decreasing temperatures, respectively). The crystal structure has been resolved for the high-spin (HS) and low-spin (LS) states at 200 and 123 K, respectively, revealing a crystallographic phase transition that occurs concomitantly to the spin crossover: at 200 K, the complex crystallizes in the monoclinic system, space group P2(1)/n, while the space group is P2(1) at 123 K. The mean Fe-N distances are shortened by 0.2 A, but the thermal spin crossover is accompanied by significant structural changes: the rearrangement of the central atom C12 of a six-membered chelate ring of [Fe(II)H2L(2-Me)]2+ to two positions (C12A and C12B) and, consequently, the lack of an inversion center at 123 K (P2(1) space group). Both HS and LS supramolecular structures involve all possible hydrogen bonds between imidazole and amine NH functions, and perchlorate anions; however, the HS supramolecular structure is a one-dimensional (1D) network, and the LS phase may better be described as a two-dimensional (2D) extended structure of A and B molecules. The structural phase transition of [FeH2L(2-Me)](ClO4)2 seems to trigger the steep and hysteretic spin crossover. Discontinuities in the temperature dependence of the M?ssbauer parameters (isomer shift and quadrupole splitting) at the spin crossover temperature confirmed the occurrence of a structural phase transition. The experimental enthalpy and entropy variations were determined by differential scanning calorimetry (DSC) as 7.5 +/- 0.4 kJ/mol and 45 +/- 3 J K(-1) mol(-1), respectively. The regular solution theory was applied to the experimental data, yielding an interaction parameter of Gamma = 3.36 kJ/mol, which is larger than 2RT(1/2), which fulfills the condition for observing hysteresis.  相似文献   

19.
Spin-crossover (SCO) magnets can act as one of the most possible building blocks in molecular spintronics due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, the electronic structures and transport properties through SCO magnet Fe(Ⅱ)-N4S2 complexes sandwiched between gold electrodes are explored by performing extensive density functional theory calculations combined with non-equilibrium Green's function formalism. The optimized Fe-N and Fe-S distances and predicted magnetic moment of the SCO magnet Fe(Ⅱ)-N4S2 complexes agree well with the experimental results. The reversed spin transition between the HS and LS states can be realized by visible light irradiation according to the estimated SCO energy barriers. Based on the obtained transport results, we observe nearly perfect spin-filtering effect in this SCO magnet Fe(Ⅱ)-N4S2 junction with the HS state, and the corresponding current under small bias voltage is mainly contributed by the spin-down electrons, which is obviously larger than that of the LS case. Clearly, these theoretical findings suggest that SCO magnet Fe(Ⅱ)-N4S2 complexes hold potential applications in molecular spintronics.  相似文献   

20.
CO2‐responsive spin‐state conversion between high‐spin (HS) and low‐spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII(COO‐terpy)2]?4 H2O ( 1?4 H2O ), stably formed cavities generated via π–π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1?4 H2O transformed to solvent‐free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate‐open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2‐accomodated form 1?CO2 (P =110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin‐state conversion by introducing/evacuating CO2 gas into/from 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号