首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

2.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

3.
Aluminum incorporation in the rhombohedrally distorted perovskite lattice of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0-0.05, y=0-0.30) decreases the unit cell volume and partial ionic and p-type electronic conductivities, while the oxygen nonstoichiometry and thermal expansion at 900-1200 K increase on doping. The creation of A-site cation vacancies has an opposite effect on the transport properties of Al-substituted ceramics. The maximum A-site deficiency tolerated by the (La,Sr)(Fe,Al)O3−δ structure is however limited, close to 3-4%. The Mössbauer spectroscopy revealed progressive localization of electron holes and a mixed charge-compensation mechanism, which results in higher average oxidation state of iron when Al3+ concentration increases. The average thermal expansion coefficients of (La0.5Sr0.5)1−xFe1−yAlyO3−δ are (12.2-13.0)×10−6 K−1 at 300-900 K and (20.1-30.0)×10−6 K−1 at 900-1200 K in air. The steady-state oxygen permeability (OP) of dense Al-containing membranes is determined mainly by the bulk ionic conductivity. The ion transference numbers at 973-1223 K in air, calculated from the oxygen permeation and faradaic efficiency (FE) data, vary in the range 1×10−4-3×10−3, increasing with temperature.  相似文献   

4.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

5.
The new oxy-chloro-sulfide (Mn1−xPbx)Pb10+ySb12−yS26−yCl4+yO (x ∈ [0.2-0.3]; y ∈ [0.3-1.6]) was synthesized by dry way at 500-600 °C. A single crystal ∼Mn0.7Pb11.0Sb11.3S25.3Cl4.7O indicates a monoclinic symmetry, space group C2/m, with a = 37.480(8), b = 4.1178(8), c = 18.167(4) Å, β = 106.37(3)°, V = 2690.2(9) Å3, Z = 2. Its crystal structure was determined by X-ray single crystal diffraction, with a final R = 5.11%. Modular analysis of the crystal structure reveals a “waffle” architecture, where complex rods with lozenge section delimitate an internal channel filled by a single chain of (Mn0.7Pb0.3)Cl6 octahedra connected by opposite edges. Minimal inter-chain distances are close to 18 Å. The rod wall, two-atom thick, presents, in alternation with S atoms, Pb or (Pb,Sb) cations with prismatic coordination in the internal atom layer, while the external atom layer is constituted exclusively by Sb cations with dissymmetric square pyramidal coordination. A (Pb,Sb)2S2 fragment connects two successive rods along (2 0 1) to form a waffle-type palissadic layer. The unique O position, half filled, presents the same environment than the isolated O positions in the oxy-sulfide Pb14Sb30S54O5, or oxy-chloro-sulfides Pb18Sb20S46Cl2O and (Cu,Ag)2Pb21Sb23S55ClO. This compound belongs to a pseudo-homologous series of chalcogenides with waffle structure, ordered according to the size of their lozenge shape channel. Such a complex senary compound of the oxy-chloro-sulfide type illustrates the structural competition between three cations, on one hand, and, on the other hand, three anions. This compound is of special interest regarding the 1D distribution of magnetic Mn2+ atoms at the ∼2 nm scale.  相似文献   

6.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

7.
The non-linear thermal expansion behaviour observed in Ce1−yPryO2−δ materials can be substantially controlled by Gd substitution. Coulometric titration shows that the charge compensation mechanism changes with increasing x, in the system GdxCe0.8−xPr0.2O2−δ. For x=0.15, charge compensation is by vacancy formation and destabilises the presence of Pr4+. At x=0.2, further Gd substitution is charge compensated by additionally raising the oxidation state of Pr rather than solely the creation of further oxygen ion vacancies. Oxygen concentration cell e.m.f. measurements in an oxygen/air potential gradient show that increasing Gd content decreases ionic and electronic conductivities. Ion transference numbers measured under these conditions show a positive temperature dependence, with typical values to=0.90,0.98 and 0.80 for x=0,0.15 and 0.2, respectively, at 950 °C. These observations are discussed in terms of defect association. Oxygen permeation fluxes are limited by both bulk ambipolar conductivity and surface exchange. However, the composition dependent trends in permeability are shown to be dominated by ambipolar conductivities, and limited by the level of electronic conductivity. At the highest temperatures, oxygen permeability of composition x=0.2 approaches that of composition x=0, Ce0.8Pr0.2O2−δ, with specific oxygen permeability values approximately 2×10−9 mol s−1 cm−1 at 950 °C, but offering much better thermal expansion properties.  相似文献   

8.
The equilibrium pressure of ternary mixtures of {x1CH3F + x2HCl + x3N2O} covering the entire composition range has been measured at temperature of 182.33 K by the static method. The system exhibits a minimum pressure for the binary {x1CH3F + x2HCl}. The molar excess Gibbs free energy has been calculated from the experimental equilibrium pressure. For the equimolar mixture . The (pxy) surface for the ternary system and the corresponding curves for the three constituent binary mixtures obtained from the Peng-Robinson equation of state are in agreement with the experimental data.  相似文献   

9.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

10.
0.8[xB2O3-(1 − x)P2O5]-0.2Na2O (with 0 ≤ x ≤ 1) glasses have been characterized by solution calorimetry at 298 K in acid solvent. The experimental data showed a strong negative departure of the enthalpy of mixing from the ideality described by the equation (in kJ/mol): ΔH = x(1 − x)(−660.2 + 570x). The results were interpreted on the basis of the structural data. Enthalpies of mixing were consistent with sub-regular solution behaviour.  相似文献   

11.
0.8[xB2O3-(1 − x)SiO2]-0.2K2O (with 0 ≤ x ≤ 1) glasses were synthesized by melt quenching techniques. DSC curves of the glasses exhibit only one glass transition. Calorimetric measurements of heats of dissolution in lead borate at 973 K indicated small negative enthalpies of mixing. Consequently phase separation was not observed over the whole composition range. The results are in good agreement with the structural data available in the literature.  相似文献   

12.
The magnetic structures of RSn1+xGe1−x (R=Tb, Dy, Ho and Er, x≈0.1) compounds have been determined by neutron diffraction studies on polycrystalline samples. The data recorded in a paramagnetic state confirmed the orthorhombic crystal structure described by the space group Cmcm. These compounds are antiferromagnets at low temperatures. The magnetic ordering in TbSn1.12Ge0.88 is sine-modulated described by the propagation vector k=(0.4257(2), 0, 0.5880(3)). Tb magnetic moment equals 9.0(1) μB at 1.62 K. It lies in the b-c plane and form an angle θ=17.4(2)° with the c-axis. This structure is stable up to the Nèel temperature equal to 31 K. The magnetic structures of RSn1+xGe1−x, where R are Dy, Ho and Er at low temperatures are described by the propagation vector k=(1/2, 1/2, 0) with the sequence (++−+) of magnetic moments in the crystal unit cell. In DySn1.09Ge0.91 and HoSn1.1Ge0.9 magnetic moments equal 7.25(15) and 8.60(6) μB at 1.55 K, respectively. The moments are parallel to the c-axis. For Ho-compound this ordering is stable up to TN=10.7 K. For ErSn1.08Ge0.92, the Er magnetic moment equals 7.76(7) μB at T=1.5 K and it is parallel to the b-axis. At Tt=3.5 K it tunes into the modulated structure described by the k=(0.496(1), 0.446(4), 0). With the increase of temperature there is a slow decrease of kx component and a quick decrease of ky component. The Er magnetic moment is parallel to the b-axis up to 3.9 K while at 4 K and above it lies in the b-c plane and form an angle 48(3)° with the c-axis. In compounds with R=Tb, Ho and Er the magnetostriction effect at the Nèel temperature is observed.  相似文献   

13.
Solid solutions SrAuxIn4−x (0.5?x?1.2) and SrAuxSn4−x (1.3?x?2.2) have been prepared at 700 °C and their structures characterized by powder and single-crystal X-ray diffraction. They adopt the tetragonal BaAl4-type structure (space group I4/mmm, Z=2; SrAu1.1(1)In2.9(1), a=4.5841(2) Å, c=12.3725(5) Å; SrAu1.4(1)Sn2.6(1), a=4.6447(7) Å, c=11.403(2) Å), with Au atoms preferentially substituting into the apical over basal sites within the anionic network. The phase width inherent in these solid solutions implies that the BaAl4-type structure can be stabilized over a range of valence electron counts (vec), 13.0-11.6 for SrAuxIn4−x and 14.1-11.4 for SrAuxSn4−x. They represent new examples of electron-poor BaAl4-type compounds, which generally have a vec of 14. Band structure calculations confirm that substitution of Au, with its smaller size and fewer number of valence electrons, for In or Sn atoms enables the BaAl4-type structure to be stabilized in the parent binaries SrIn4 and SrSn4, which adopt different structure types.  相似文献   

14.
The complex conductivity spectra of mixed alkali borate glasses of compositions y [xLi2O·(1−x)Na2O]·(1−y)B2O3 (with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.1, 0.2, 0.3) in a frequency range between 10−2 Hz and 3 MHz and at temperatures ranging from 298 to 573 K have been studied. For each glass composition the conductivities show a transition from the dc values into a dispersive regime where the conductivity is found to increase continuously with frequency, tending towards a linear frequency dependence at sufficiently low temperatures. Mixed alkali effects (MAEs) in the dc conductivity and activation energy are identified and discussed. It has been for the first time found that the strength of the MAE in the logarithm of the dc conductivity linearly increases with the total alkali oxide content, y, and the reciprocal temperature, 1/T.  相似文献   

15.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

16.
The crystal structure of the Zr1−xYxNiSn half-Heusler solid solutions is synthesized and their crystal structure is determined. Electrical resistivity and thermoelectric Seebeck coefficient are measured in the 80-380 K temperature range, whereas magnetic susceptibility is measured at 290 K. It is established that substitution of Zr host atoms by Y in the ZrNiSn intermetallic semiconductor is equivalent to doping by acceptor impurities. Self-consistent ab initio calculations, based on the full potential local orbital (FPLO) minimum basis method, are performed to investigate the electronic and thermoelectric properties of these alloys. Spin polarized within the framework of the coherent potential approximation (CPA) are included.  相似文献   

17.
The intermetallic compounds YbAuxGa2−x (0.26≤x≤1.31) were synthesized by melting of elemental components and subsequent annealing. The crystal structure of YbAu1.04Ga0.96 was investigated using single-crystal X-ray diffraction data: structure type TiNiSi, space group Pnma, a=7.1167(3) Å, b=4.5019(3) Å, c=7.7083(3) Å, RF=0.028 for 27 variables and 441 reflections. At 600 °C this compound is described as partially substituted TiNiSi type and shows a homogeneity range around the equiatomic composition YbAuxGa2−x (0.94≤x≤1.19). For the gallium- (0.26≤x≤0.83) and gold-rich (1.21≤x≤1.31) regions, the KHg2 type of crystal structure (space group Imma) with mixed Au/Ga occupation is found. A temperature-driven phase transition for the composition YbAuGa from ordered TiNiSi to disordered KHg2 structure type is observed at 629 °C. Yb LIII X-ray absorption spectra indicate an intermediate valence of +2.5 for Yb atoms in YbAuGa. For samples deviating from this composition a further reduced valence of Yb is observed. Magnetic susceptibility studies show a non-magnetic 4f14 ground state of Yb atoms with thermal fluctuations towards the 4f13 state.  相似文献   

18.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

19.
We report the flux growth and characterization of Ln2Ag1−xGa10−y (Ln=La, Ce), a disordered variant of the Ce2NiGa10 structure type. Single crystals of La2Ag1−xGa10−y (x∼0.3; y∼0.6) and Ce2Ag1−xGa10−y (x∼0.3; y∼0.9) were grown by the self-flux method and characterized using single-crystal X-ray diffraction. Transport measurements of Ce2Ag1−xGa10−y (x∼0.3; y∼0.9) reveal metallic behavior with a transition at 3 K. Magnetic measurements indicate antiferromagnetic ordering at 3 K of localized Ce3+ moments for Ce2Ag1−xGa10−y. Magnetoresistance is positive with a maximum value of 16% at 9 T. La2Ag1−xGa10−y exhibits metallic behavior with magnetic susceptibility showing temperature independent paramagnetism. We will compare Ce2Ag1−xGa10−y (x∼0.3; y∼0.9) to Ce2NiGa10 to examine the effects of transition metal substitution and to the related Ce(Ag,Ga)4 phase to examine the effects of crystal structure on the physical properties.  相似文献   

20.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether with sodium cation in {(1 − x)DMA + xH2O} at T = 298.15 K have been calculated. The equilibrium constants of complex formation of benzo-15-crown-5 ether with sodium cation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by calorimetric method at T = 298.15 K. The complexes are enthalpy stabilized and entropy destabilized. A simple model has been proposed to describe the relationship between the thermodynamic functions of complex formation of crown ethers with sodium cation and the structural and energetic properties of the mixed water-organic solvent. The linear enthalpy-entropy relationship for complex formation is also presented. The solvation enthalpy of the complex in {(1 − x)DMA + xH2O} is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号