首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass–spring–damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.  相似文献   

2.
Since the 1930s, centrifugal pendulum vibration absorbers have been used in rotating and reciprocating machinery for the attenuation of torsional vibrations. A large variety of absorber types were suggested and the design was done by linearization theory until the introduction of the tautochronic bifilar pendulum absorbers. Since then, the performance and dynamic stability of this specific absorber type have been considered in analytical and numerical investigations. Different perturbations, e.g. nonlinear mistuning, were considered in order to optimize the system performance, but the characteristic bifilar design remained unchanged. In this paper, a general approach for the design of tautochronic pendulum vibration absorbers is proposed. As a result, it is possible to deal with a large variety of non-bifilar centrifugal vibration absorber designs which provide application-related optimal performance and resolve some of the existing design limitations.  相似文献   

3.
Dynamic vibration absorbers for vibration control within a frequency band   总被引:2,自引:0,他引:2  
The use of dynamic vibration absorbers to control the vibration of a structure in both narrow and broadbands is discussed in this paper. As a benchmark problem, a plate incorporating multiple vibration absorbers is formulated, leading to an analytical solution when the number of absorbers yields one. Using this analytical solution, control mechanisms of the vibration absorber in different frequency bandwidths are studied; the coupling properties due to the introduction of the absorber into the host structure are analyzed; and the control performance of the absorber in different control bandwidths is examined with respect to its damping and location. It is found that the interaction between the plate and the absorber by means of the reaction force from the absorber plays a dominant role in a narrow band control, while in a relatively broadband control the dissipation by the absorber damping governs the control performance. When control bandwidth further enlarges, the optimal locations of the absorbers are not only affected by the targeted mode, but also by the other plate modes. These locations need to be determined after establishing a trade-off between the targeted mode and other modes involved in the coupling. Finally, numerical findings are assessed based on a simply-supported plate and a fair agreement between the predicted and measured results is obtained.  相似文献   

4.
In this paper, a tunable vibration absorber set (TVAs) is designed to suppress regenerative chatter in milling process (as a semi-active controller). An extended dynamic model of the peripheral milling with closed form expressions for the nonlinear cutting forces is presented. The extension part of the cutting tool is modeled as an Euler–Bernoulli beam with in plane lateral vibrations (xy directions). Tunable vibration absorbers in xy directions are composed of mass, spring and dashpot elements. In the presence of regenerative chatter, coupled dynamics of the system (including the beam and xy absorbers) is described through nonlinear delay differential equations. Using an optimal algorithm, optimum values of the absorbers' position and their springs' stiffness in both xy directions are determined such that the cutting tool vibration is minimized. Results are compared for both linear and nonlinear models. According to the results obtained, absorber set acts effectively in chatter suppression over a wide range of chatter frequencies. Stability limits are obtained and compared with two different approaches: a trial and error based algorithm and semi-discretization method. It is shown that in the case of self-excited vibrations, the optimum absorber improves the process stability. Therefore, larger values of depth of cut and consequently more material removal rate (MRR) can be achieved without moving to unstable conditions.  相似文献   

5.
Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the attenuation of torsional vibrations in rotating and reciprocating machines. They consist of masses that are constrained to move along specific paths relative to the rotational axis of the machine. Previous analytical studies have considered the performance of single absorber systems with general paths and of multi-absorber systems with a specific path type. In this paper, we investigate the performance and dynamic stability of systems comprised of multiple, identical centrifugal pendulum vibration absorbers riding on quite general paths. The study is carried out by considering a scaling of the system parameters, based on physically realistic ranges of dimensionless parameters, which permits application of the method of averaging. It is found that the performance of these systems is limited by two distinct types of instabilities. In one type, the system of absorbers lose their synchronous character, while in the other a classical non-linear jump affects all absorbers identically, leading to highly undesirable system behavior. These results are used to evaluate two common types of absorber paths, namely circles and cycloids, including intentional mistuning of the absorber frequencies. The results are used to make some recommendations about the selection of paths to achieve design goals in terms of absorber performance and operating range. The analytical predictions are confirmed by numerical simulations.  相似文献   

6.
In this paper a new method for choosing the parameters of a Two degree-of-freedom (dof) tuned vibration absorber (TVA) with translational and rotational degrees of freedom is described. The dynamic stiffness approach is used to model the device, which is constrained to move in the translational direction and to rotate. The choice of the parameters involves a procedure similar to that proposed by Den Hartog in the optimization of a single dof TVA, in which the invariant (fixed) points of the frequency response function of the TVA and the host structure are used to determine the stiffness of the TVA for a given mass. In this paper the approach is extended and applied to the design of a 2dof TVA, and a numerical procedure is used to determine the optimum amount of damping. The method is simple and easy to implement. A numerical example is presented to compare the performance of the 2dof TVA designed using the method described here with the optimal 2dof TVA. It is shown that the performances of the TVAs are similar, validating the new approach.  相似文献   

7.
An active, standalone vibration absorber utilizing the state feedback taken from the absorber mass is proposed. Expressions of the optimum absorber parameters are obtained both by optimizing the Η norm of the frequency response function. For improved transient response featuring low peak response and fast attenuation, the design procedure utilizes the mode equalization followed by the maximization of the damping. An interesting feature of the proposed absorber is that the performance of the absorber does not require having its natural frequency close to the natural frequency of the primary system as is generally the case for tuned passive absorbers or other active and semi-active tuned vibration absorbers. In fact, the performance of the proposed system can be progressively enhanced by increasing the absorber frequency. Compared to the optimum passive absorber, the optimal active absorber can yield wider bandwidth of operation around the natural frequency of the primary system and lower frequency response within the suppression band. The active absorber also offers better transient response compared to the passive absorber both optimized for the best transient responses. The efficacy of the absorber is analyzed both for a single-degree-of-freedom and beam like primary structure.  相似文献   

8.
The concept introduced previously by the authors on the best sound absorber having the maximum allowable efficiency in absorbing the energy of an incident sound field has been extended to arbitrary linear elastic media and structures. Analytic relations have been found for the input impedance characteristics that the best vibrational energy absorber should have. The implementation of these relations is the basis of the proposed impedance method of designing efficient vibration and noise absorbers. We present the results of a laboratory experiment that confirms the validity of the obtained theoretical relations, and we construct the simplest best vibration absorber. We also calculate the parameters and demonstrate the efficiency of a dynamic vibration absorber as the best absorber.  相似文献   

9.
A design method is proposed to suppress stationary random vibration in flexible structures using a hybrid vibration absorber (HVA). While the traditional vibration absorber can damp down the vibration mainly at the pre-tuned mode of the primary structure, active damping is generated by the proposed HVA to damp down all resonant modes of interest of the vibrating structure and the spatial average mean square motion of the vibrating structure can be minimized. Only one absorber and one feedback signal are required to achieve global vibration suppression of a flexible structure under stationary random excitation. A special pole-placement controller is designed such that all vibration modes of the flexible structures become critically damped. It is proved analytically that the proposed HVA damps the vibration of the entire structure instead of just the attachment point of the absorber. The proposed optimized HVA is tested on a beam structure and it shows a superior performance on global suppression of broadband vibration in comparison to other published designs of passive and hybrid vibration absorbers.  相似文献   

10.
Panel-type sound absorbers are commonly used to absorb low-frequency sounds. Recently, a new type of panel/membrane absorbers has been proposed as a next-generation sound absorber free from environmental problems. On the other hand, it is known that placing a honeycomb structure behind a porous layer can improve sound absorption performance and a similar effect can be obtained for microperforated-panel absorbers. Herein, the sound absorption characteristics of a panel sound absorber with a honeycomb in its back cavity are theoretically analyzed. The numerical results are used to discuss the variations in the sound absorption characteristics due to the honeycomb as well as the mechanism for sound absorption.  相似文献   

11.
A recently reported design of a hybrid vibration absorber (HVA) which is optimized to suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of the SDOF system under stationary random force excitation. The proposed HVA makes use of the feedback signals from the displacement and velocity of the absorber mass for minimizing the vibration response of the dynamic structure based on the H2 optimization criterion. The objective of the optimal design is to minimize the mean square vibration amplitude of a dynamic structure under a wideband excitation, i.e., the total area under the vibration response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide significant vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the primary system. The proposed HVA are tested on a SDOF system and continuous vibrating structures with comparisons to the traditional passive vibration absorber.  相似文献   

12.
The paper proposes an amplitude reduction method for parametric resonance with a new type of dynamic vibration absorber utilizing quadratic nonlinear coupling. A main system with asymmetric nonlinear restoring force and harmonic excitation causes parametric resonance in the system. In contrast with autoparametric vibration absorber, the natural frequency of the vibration absorber is tuned to be in the neighborhood of twice that of the main system. For such a vibration absorber, we investigate the effect on the amplitude reduction for a parametrically excited main system. Analytical results using the method of multiple scales show that the amplitude of parametric resonance is reduced by the effect of the vibration absorber. The experimental results by a simple apparatus indicate that the parametric resonance is stabilized by the effects of both vibration absorber and Coulomb friction of the main system. Moreover, numerical results considering the Coulomb friction of the main system show that the amplitude of parametric resonance becomes close to zero by the proposed vibration absorber.  相似文献   

13.
We propose an optimal design for supplementing flexible structures with a set of absorbers and piezoelectric devices for vibration confinement and energy harvesting. We assume that the original structure is sensitive to vibrations and that the absorbers are the elements where the vibration energy is confined and then harvested by means of piezoelectric devices. The design of the additional mechanical and electrical components is formulated as a dynamic optimization problem in which the objective function is the total energy of the uncontrolled structure. The locations, masses, stiffnesses, and damping coefficients of these absorbers and capacitances, load resistances, and electromechanical coupling coefficients are optimized to minimize the total energy of the structure. We use the Galerkin procedure to discretize the equations of motion that describe the coupled dynamics of the flexible structure and the added absorbers and harvesting devices. We develop a numerical code that determines the unknown parameters of a pre-specified set of absorbers and harvesting components. We input a set of initial values for these parameters, and the code updates them while minimizing the total energy in the uncontrolled structure. To illustrate the proposed design, we consider a simply supported beam with harmonic external excitations. Here, we consider two possible configurations for each of the additional piezoelectric devices, either embedded between the structure and the absorbers or between the ground and absorbers. We present simulations of the harvested power and associated voltage for each pair of collocated absorber and piezoelectric device. The simulated responses of the beam show that its energy is confined and harvested simultaneously.  相似文献   

14.
The adaptive-passive vibration absorber shows promise for combining the stability and low complexity of passive tuned absorbers with the robust performance of active vibration control schemes. Previous adaptive tuned vibration absorbers (ATVA) had been complex and bulky. Shape memory alloys (SMA), with their variable material properties, offer an alternative adaptive mechanism. Heating an SMA causes a change in the elastic modulus of the material. An ATVA using spring elements composed of three pairs of SMA wires and one pair of steel wires was constructed and tested. On-off actuation of the SMA elements created an ATVA with four discrete tuned frequencies. Characterization testing of the absorber showed variation of the natural frequency of the ATVA of approximately 15%. The ATVA was applied to a primary system and the frequency response of the system at various states of ATVA actuation was determined. Manual tuning of the ATVA actuation during a stepped-sine base excitation of the primary system showed a wider notch of attenuation than was possible with a non-adaptive absorber. Results of the tests indicate that an adaptive absorber incorporating SMA as a tuning element has potential as a simple, high-performance adaptive-passive technique for vibration control.  相似文献   

15.
Sound reverberation is an important problem in some industrial environments. As indicated by the Occupational Safety and Health Act of 1970, noise is responsible for the psychological and physiological ills of workers. Therefore reduction of reverberation becomes essential. For maintenance and other reasons, the thickness of sound absorbers used for reverberation control may be constrained. Consequently there is interest in minimizing noise using sound absorbers with constrained thickness. Optimization of a composite absorber using a simulated annealing algorithm is presented. Simulated annealing is a stochastic relaxation technique based on analogy with the physical process of annealing metal. The algorithm requires a mathematical model for the acoustical properties of the absorber. Before optimization, the accuracy of the mathematical model was checked against experimental data. A program for optimizing in respect of broad band noise at a specified receiver has been created and run. Results prove that SA optimization provides a quick and efficient approach in designing constrained thickness composite sound absorbers.  相似文献   

16.
This article presents a study on mid-infrared and low-THz absorbers based on metallic and graphene metasurface. The absorber is constructed of a periodic array of patterned elements in patch form placed on a quarter-wavelength dielectric film terminated by a metallic reflector. A simple analytical circuit model equivalent to patch array is used for employing the matching impedance approach to realize the wideband absorber. This absorber is polarization independent for normal incident waves owing to its symmetric structure. Simulation and analytical circuit model results show that the graphene and metallic-based absorbers proposed in this paper can operate with an absorption value above 90% in a normalized bandwidth of 100% in the low terahertz (THz) and the mid-infrared regime, respectively. The proposed absorber is wide-angle for both TM and TE polarizations and polarization-insensitive for small incident angles.  相似文献   

17.
In a single degree-of-freedom weakly nonlinear oscillator subjected to periodic external excitation, a small-amplitude excitation may produce a relatively large-amplitude response under primary resonance conditions. Jump and hysteresis phenomena that result from saddle-node bifurcations may occur in the steady-state response of the forced nonlinear oscillator. A simple mass-spring-damper vibration absorber is thus employed to suppress the nonlinear vibrations of the forced nonlinear oscillator for the primary resonance conditions. The values of the spring stiffness and mass of the vibration absorber are significantly lower than their counterpart of the forced nonlinear oscillator. Vibrational energy of the forced nonlinear oscillator is transferred to the attached light mass through linked spring and damper. As a result, the nonlinear vibrations of the forced oscillator are greatly reduced and the vibrations of the absorber are significant. The method of multiple scales is used to obtain the averaged equations that determine the amplitude and phases of the first-order approximate solutions to primary resonance vibrations of the forced nonlinear oscillator. Illustrative examples are given to show the effectiveness of the dynamic vibration absorber for suppressing primary resonance vibrations. The effects of the linked spring and damper and the attached mass on the reduction of nonlinear vibrations are studied with the help of frequency response curves, the attenuation ratio of response amplitude and the desensitisation ratio of the critical amplitude of excitation.  相似文献   

18.
针对两点温度定标算法在应用过程中曝露的问题,提出了基于变积分时间的红外焦平面非均匀性校正算法.该算法先对图像进行非线性压缩,转换为线性图像,再利用红外焦平面阵列探测元的响应特性与积分时间之间的关系,采用改变积分时间的方法拟合红外焦平面探测器的平均响应特性曲线,进行两点校正,然后对结果进行取指数操作,即得到原图非均匀校正后的图像.分别利用两点温度定标法和变积分法对航拍红外图像进行校正效果验证,同时进行了不同校正算法的非均匀性适应性评价实验.实验结果表明新算法计算量小,校正准确度高,反应速度快,并在一定程度上解决了大动态范围下响应非线性对校正性能的影响,具有很好的工程应用价值.  相似文献   

19.
The H2 optimum parameters of a dynamic vibration absorber of non-traditional form are derived to minimize the total vibration energy or the mean square motion of a single degree-of-freedom (sdof) system under random force excitations. The reduction of the mean square motion of the primary structure using the traditional vibration absorber is compared with the proposed dynamic absorber. Under optimum tuning condition, it is shown that the proposed absorber when compared with the traditional absorber, provides a larger suppression of the mean square vibrational motion of the primary system.  相似文献   

20.
This paper is concerned with the dynamic analysis and parameter optimization of both passive and active piezo-electrical dynamic vibration absorbers that are strongly coupled with a single degree of freedom vibrating structure. The passive absorber is implemented by using an RsLs parallel shunt circuit while the active absorber is implemented by feeding back the acceleration of the structure through a second-order lowpass filter. An impedance-mobility approach is used for the electromechanical coupling analysis of both types of absorbers coupled with the structure. Using this approach it is demonstrated that the passive and active absorbers can be made exactly equivalent. A maximally flat frequency response strategy is used to find the optimal damping ratio of the passive absorber while a robust, optimal control theory is used to find that for the active absorber. It is found that the passive optimization strategy corresponds to an optimal, robust feedback control of 2 dB spillover. Simulations and experiments are conducted to support the theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号