首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
{[Pb3(CPIDA)2(H2O)3]·H2O}n1, {[Cd3(CPIDA)2(H2O)4]·5H2O}n2, [Cd(HCPIDA)(bpy)(H2O)]n3 (bpy=4,4′-bipyridine) and {[Co3(CPIDA)2(bpy)3(H2O)4]·2H2O}n4 were synthesized with N-(4-carboxyphenyl) iminodiacetic acid (H3CPIDA). In 1, the CPIDA3− ligands adopt chelating and bridging modes with Pb(II) to possess a 3D porous framework. In 2D-layer 2, the CPIDA3− ligands display a simple bridging mode with Cd(II). The 2D layers have parallelogram-shaped channels along a axis. With bpy ligands, the HCPIDA2− ligands in 3 show more abundant modes, but 3 still displays a 2D sheet on bc plane for the unidentate bpy molecules. However, in 3D-framework 4, the bpy ligands adopt bridging bidentate at a higher pH value and the CPIDA3− ligands show bis-bidentate modes with Co(II). Additionally, 2D correlation analysis of FTIR was introduced to ascertain the characteristic adsorptions location of the carboxylate groups with different coordination modes in 4 with thermal and magnetic perturbation. Compounds 1, 2 and 4 exhibit the fluorescent emissions at room temperature.  相似文献   

2.
Four coordination polymers, [Zn(pda)(bpy)(H2O)]n·nH2O (1), [Cd(pda)(prz)(H2O)]n (2), [Co3(μ3-OH)2(pda)2(pyz)]n·2nH2O (3) and [Pr2(pda)3(H2O)2]n (4) (H2pda=1,3-phenylendiacetic acid, bpy=4,4′-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and π-π stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm3 mol−1 K, and θ=−23.9 and −46.3 K, respectively.  相似文献   

3.
Metal–organic frameworks with the compositions [Zn(bpy)(bdc)(H2O)]n1, [Zn(bpy)(btec)1/2(H2O)]n2, [Cd(bpy)(bdc)(H2O)]n3 and Cd(bpy)(btec)1/2(H2O)]n4 (H2bdc = 1,4-benzenedicarboxylic acid = terephthalic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid and bpy = 2,2′-bipyridine) have been synthesized and characterized using spectroscopic and single-crystal X-ray diffraction techniques. In these complexes, ZnII/CdII-2,2′-bipyridine units and carboxylate anions exists as nodes and spacers respectively. An infinite 1D zig-zag chain structure is observed for both complexes 1 and 3, whereas complexes 2 and 4 display a 3D supramolecular architecture. The complexes are found to be photoluminescent, porous and show significant thermal stability.  相似文献   

4.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

5.
Hydrothermal self-assembly has generated three coordination polymers incorporating the kinked hydrogen-bonding capable tethering ligand 4,4′-dipyridylamine (dpa) and the long flexible aliphatic dicarboxylate azelate dianion (O2C(CH2)7CO2, aze), [M(aze)(dpa)(H2O)]n (M = Co, 1; M = Ni, 2) and {[Cd(aze)(dpa)] · 2H2O}n (3). Complexes 1 and 2 possess crystallographically disordered azelate ligands, forming related three-dimensional (3-D) 4-connected “ligand vacancy” primitive cubic coordination polymer networks via the random intersection of two different types of [M(aze)(dpa)]n idealized two-dimensional (2-D) layers. Compound 3 manifests a 3-D 658 CdSO4 topology coordination polymer network, formed from orthogonal sets of parallel [Cd(aze)]n double chains linked through dpa ligands. Luminescent properties for 3 and thermal properties are also discussed.  相似文献   

6.
Two novel cobalt(II) complexes, [Co(μ-succinato)(H2O)2(pyridine)2]n1 and {[Co2(μ-H2O)(μ-glutarato)2(pyridine)2]·pyridine}n2 have been synthesized by a wet chemistry method. In complex 1, the Co(II) ions are linked through succinate ligands to created one-dimensional polymeric chain along the b-axis. Complex 2 consists of a polymeric chain of dinuclear Co(II) moieties in which two cobalt(II) ions are linked through a bridging water and two bridging carboxylate groups from two glutarate ligands. The glutarate ligands in complex 2 display two coordination modes, interbinuclear bridging and intrabinuclear bridging. All the bond angles of the alkyl chain in complex 2 are between 115.7° and 118.5°, supporting the gauche conformation. Free pyridine molecules were found in the cavities between the chains. Two strong intramolecular hydrogen bonds are observed between the coordinated water and the uncoordinated carboxylate oxygen atom in both complexes. Complex 2 is further stabilized by π–π stacking of pyridine molecules. Complex 1 is a paramagnet (C = 3.50(1) cm3 K mol and θ = −5.0(5) K) and complex 2 exhibits a broad maximum at 4 K due to weak coupling within the dimeric unit.  相似文献   

7.
Three divalent copper coordination polymers containing aromatic dicarboxylate ligands and the long-spanning tethering imine bis(4-pyridylmethyl)piperazine (bpmp) have been prepared and structurally characterized. The length of the dicarboxylate pendant arms, carboxylate binding mode, and the inclusion of anionic components play a synergistic role in structure direction in this system. {[Cu(ip)(bpmp)(H2O)]·5H2O}n (ip = isophthalate, 1) displays neutral (4,4) rectangular coordination polymer grids that stack in an ABCD repeat pattern. Use of the longer pendant arm dicarboxylate 1,3-phenylenediacetate (phda) resulted in {[Cu2(phda)2(bpmp)]·H2O}n (2), a 3-D network coordination polymer with primitive cubic topology that features strongly antiferromagnetically coupled (J = −331(1) cm−1) {Cu2(CO2)4} paddlewheel units. In the presence of excess nitrate ions, {[Cu(phda)(Hbpmp)](NO3)·3H2O}n (3) was isolated instead of 2; 3 manifests cationic 2-D coordination polymer layers built from weakly antiferromagnetically coupled (J = −2.43(1) cm−1) {Cu2O2} dimers linked through phda and protonated bpmp ligands. The striking difference in magnetic properties is ascribed to the equatorial–equatorial versus axial–equatorial bridging of copper coordination spheres in 2 and 3, respectively.  相似文献   

8.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

9.
Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4′-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a “5+1” extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses.  相似文献   

10.
Hydrothermal synthesis has afforded a pair of isostructural acentric three-dimensional coordination polymers {[M2(malonate)2(dpa)(H2O)2] · 2H2O}n (M = Co, 1; M = Ni, 2; dpa = 4,4′-dipyridylamine), which were structurally characterized via single-crystal X-ray diffraction and spectroscopically and thermally analyzed. Both materials exhibit exotridentate malonate ligands conjoining metal atoms into grid-like [M(malonate)(H2O)]n layers; in turn, these are connected into 3-D sqp lattices (4466 topology) through tethering dpa ligands. The central kink and inter-ring torsion within the dpa ligands enforces the acentric Aba2 space group of crystals of 1 and 2. Antiferromagnetic coupling (g = 2.08(2), J = –1.05(8) cm−3) was observed within the malonate-bridged layer motifs within the cobalt derivative 1. In contrast, the nickel congener 2 exhibited ferromagnetic coupling (g = 2.201(1), J = 0.289(1) cm−3).  相似文献   

11.
Four new polymers, namely [Ni(-tsgluO)(2,4′-bipy)2(H2O)2]n·5nH2O (1), [Co(-tsgluO)(2,4′-bipy)2(H2O)2]n·5nH2O (2), [Ni(-tsgluO)(4,4′-bipy)]n·0.5nH2O (3), and [Co(-tsgluO)(4,4′-bipy)]n·0.5nH2O (4), where tsgluO2−=(+)-N-p-tolylsulfonyl-l-glutamate dianion, 2,4′-bipy=2,4′-bipyridine, and 4,4′-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P21, forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P−1 and is composed of binuclear [Co2O6N2]n4− units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through π-π stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes.  相似文献   

12.
Four new coordination polymers {[Ni(HL)(H2O)]·H2O}n (1), {[Co(HL)(H2O)]·H2O}n (2), {[Co(HL)]·4H2O}n (3) and {[Zn(HL)]·2H2O·0.5C2H5OH}n (4) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid] have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 2 display (3, 3)-connected 2D network with (4, 82) topology. While 3 and 4 exhibit a binodal (3, 6)-connected 2D network with a Schläfli symbol (43)2(46, 66, 83). The complexes 14 show remarkable thermal stability and 4 exhibits blue fluorescence with maximum emission at 413 nm upon excitation at 362 nm in the solid state at room temperature. In addition, the magnetic measurements of 3 indicate that there are antiferromagnetic interactions between the neighboring Co(II) centers.  相似文献   

13.
Based on the versatile ligand 3,5-bis(4-pyridyl)-1H-1,2,4-triazole (Hbpt) derived from an in situ metal/ligand reaction, a series of coordination compounds CoCl4(H3bpt)(H2O) (1), Cu(H2bpt)2(SO4)2(H2O)6 (2), [Ag(bpt)]n (3), [Co(Hbpt)(pa)]n (4), [Co(Hbpt)(pda)]n (5) and [Cu(Hbpt)(pda)(H2O)]n (6) have been constructed (pa = phthalate, pda = 1,3-phenylenediacetate). The structures of these targeted complexes have been characterized by X-ray single-crystal diffraction techniques. Structural analysis reveals that Hbpt adopts versatile coordination modes to arrange the metal ions in 0-D point, simple (4,4) layers and dinuclear core chains in 13, which are further extended via the benzenedicarboxylate connectors to give rise to a variety of coordination networks such as (4,4), (412 · 63), (64 · 82) topologies in 46. The supramolecular organization through hydrogen bonds is analyzed for these complexes and thermal stability of these crystalline materials has been explored by TG-DTG.  相似文献   

14.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

15.
The syntheses and characterization of novel ruthenium(II) complexes containing bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza), a new class of scorpionate ligands, are reported herein. [RuCl(bdmpza)(η4-1,5-cyclooctadiene)] (1) was found to be a versatile precursor to synthesize a wide range of new ruthenium(II) complexes with the bdmpza ligand. The treatment of 1 with pyridine (py), diphenylphosphinoethane (dppe), 2,2′-bipyridyl (bpy), 1,10-phenanethroline (phen), or bispicolylamine (Hbpica) in refluxing N,N-dimethylformamide resulted in displacement of the 1,5-cyclooctadiene ligand to afford [RuCl(bdmpza)(py)2] (2), [RuCl(bdmpza)(dppe)] (3), [RuCl(bdmpza)(bpy)] (4), [RuCl(bdmpza)(phen)] (5), and [Ru(bdmpza)(Hbpica)]Cl (6Cl) in good yields, respectively. The structures of 14, and 6 were determined by X-ray structure analyses.  相似文献   

16.
The use as coligands of the nicotinamide (nia) and isonicotinamide (inia) molecules in the complex formation between copper(II) and phenylmalonate [Phmal = dianion of phenylmalonic acid] yielded the compounds of formula [Cu(inia)(Phmal)(H2O)] (1) and [Cu(inia)(Phmal)(H2O)]n (2). Although single crystals of 1 of appropriate size were grown, their unresolved twinning and space group ambiguity prevented a satisfactory X-ray structure determination. The crystal structure 2 consists of corrugated layers of copper(II) ions with intralayer carboxylate-phenylmalonate bridges in the anti-syn (equatorial-apical) coordination mode. A water molecule and the isonicotinamide group are coordinated to the copper atom in trans position being located above and below each layer. The Phmal ligand adopts the bidentate/monodentate coordination mode with the bidentate coordination involving one equatorial and one apical bonds, a feature which is unprecedented for the copper(II) complexes with alkyl(aryl)substituted-malonate derivatives. Intra- and interlayer H-bonds together with intralayer π-π type interactions between the phenyl and inia aromatic groups contribute to the stabilization of the three-dimensional supramolecular structure. Magnetic susceptibility measurements of complexes 1 and 2 in the temperature range 1.9-300 K are quasi identical and they correspond to a very weak ferromagnetic interaction between the copper(II) ions [J = +0.091(2) cm−1 (1) and +0.097(2) cm−1 (2) through the spin Hamiltonian for an isotropic square grid of interacting spin doublets which is defined as H = −JΣiSi · Si+1]. The strong similarity in the magnetic properties of 1 and 2 allow us to conclude that although they are not isostructural species, their structures have to be very close.  相似文献   

17.
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O-H?O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20-300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner-Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner-Fisher approximation gave the following result for compound 2: g=2.18, J=-0.4 cm−1.  相似文献   

18.
Four new complexes, {[M(NAIP)(H2O)4]·2H2O}n (M = Co (1), M = Mn (2)), {[Zn(NAIP)]·0.5H2O}n (3) and {Cd(NAIP)(H2O)2]·1.5H2O}n (4) [H2NAIP = 5-(nicotinamido)-isophthalic acid] have been prepared and structurally characterized. The ligand NAIP2− exhibits different coordination modes and leads to the formation of various architectures. Complexes 1 and 2 show a one-dimensional (1D) zigzag chain, where hydrogen-bonding interactions further link these chains to a three dimensional (3D) supramolecular structure. For complex 3, a 3D coordination network with a four-coordinated Zn(II) and NAIP2− as a SBU was observed. Complex 4 presents a three-connected 2-fold interpenetrated 3D network with a (10, 3)-b net topology. Their luminescent and magnetic properties have been investigated in the solid state.  相似文献   

19.
20.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号