首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

2.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

3.
In this paper, ascorbic acid as a new carbon dioxide (CO2) absorbent was investigated. The equilibrium solubility of CO2 into 0.5, 1 and 1.5 mol dm−3 (M) aqueous ascorbic acid solutions were measured experimentally with a stirred batch reactor at total atmospheric pressure over the CO2 partial pressure ranging from 0 to 45 kPa and temperatures between 298 and 313 K. The results of the gas solubility are presented as loading capacity (mol CO2/mol ascorbic acid) as function of partial pressure of CO2 for all experimental runs. Experimental results showed that solubility of CO2 increases with increase in molar concentration of ascorbic acid solution at a given temperature and decreases with increase in temperature at a given concentration. The densities and viscosities of the ascorbic acid solutions were measured at the same conditions of the solubility measurement. Some corrosion rate tests were also performed on carbon steel at temperature of 308 K. It was observed that viscosity and corrosion rate increase when the molar concentration of ascorbic acid solution increases.  相似文献   

4.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

5.
In this work a series of commercial carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. The highest H2 storage capacity at 298 K and 90 bar was 0.5 wt%, while at 77 K and atmospheric pressure it was 2.9 wt%. It is also showed that, in order to predict the hydrogen storage capacity of carbon material both at cryogenic and ambient temperature, the only use of BET surface area or total micropore volume obtained from N2 adsorption isotherm may be insufficient, the characterization of the narrow microporosity is needed due to its high contribution to hydrogen adsorption capacity. The process involved in hydrogen storage in pure carbon materials seems to be physisorption. Morphological or structural characteristics have no influence, at least on gravimetric storage capacity.  相似文献   

6.
Reactions between carbon dioxide and fluorine were examined at temperatures of 303-523 K under various pressure and mixture ratios of both gases. Reactions were carried out similarly under the existence of NaF, CsF and EuF3.After the reaction, fluorine was removed and the reaction products were analyzed using FT-IR, GC/FT-IR and GC/MS. The major products were CF3OF, COF2, CF4 and CF2(OF)2.The best yield of COF2 was 11.1% under the reaction condition of CO2/F2 = 76 kPa/76 kPa with temperature of 498 K for 72 h in a direct reaction. The formation rate of COF2 in the direct reaction was estimated as 0.232 dm3 mol−1 h−1 under the reaction conditions of CO2/F2 = 76 kPa/76 kPa, at 498 K. In the presence of CsF, it was estimated as 1.88 dm3 mol−1 h−1 at CO2/F2 = 76 kPa/76 kPa at 498 K.The activation energy of the COF2 formation in the direct reaction was estimated as 45.7 kJ mol−1 at CO2/F2 = 76 kPa/76 kPa at 498 K. In addition, 24.2 and 38.9 kJ mol−1 were evaluated at CO2/F2 = 76 kPa/76 kPa at 498 K, respectively, in the presence of CsF and EuF3.  相似文献   

7.
We successfully synthesized Mg2Cu alloys from the metal nanoparticles, which are produced from hydrogen plasma-metal reaction method, in two ways. One is under 0.1 MPa argon at 673 K and the other is under 4.0 MPa hydrogen at 673 K. The structure, morphology and reaction mechanism were studied. The hydrogen absorption and the pressure-composition isotherm properties of the obtained Mg2Cu alloy under hydrogen were studied. The van’t Hoff equation and the formation enthalpy and entropy of the resulting hydride (MgH2+MgCu2) were obtained from the equilibrium plateau pressures of the desorption isotherms. Nanostructured Mg2Cu shows excellent hydrogen storage properties because nanostructured materials have more surface area and more defects, which means more nucleation sites with hydrogen, and smaller particles, which means shorter diffusion distance for hydrogen in the alloys particles.  相似文献   

8.
Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD, FT-IR and texture property test. The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces. The texture property test reveals that the activated carbons displayed different texture properties, especially the micropore size distribution. The adsorption capacities of the activated carbons were investigated by adsorbing CH4, CO2, N2 and O2 at 25 ?C in the pressure range of 0-200 kPa. The results reveal that all the activated carbons had high CO2 adsorption capacity, one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa. And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa. In the pressure range of 0-200 kPa, the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.  相似文献   

9.
The adsorption of CO2 on a number of activated carbons, thermal carbon black, and oxide materials at 195 K was studied using static and dynamic techniques. The landing surface areas ω(CO2) ≈ 0.19 nm2 on thermal carbon black and the absolute values of sorption for P/P 0 < 0.4 were determined. The density of adsorbed CO2 in the micropore volume was estimated at ρ(CO2) = 0.91 g/cm3. It was demonstrated that the previously found effect of a weakening of the sorption interaction of nitrogen molecules with thin-walled materials (which manifested itself in an analysis of sorption isotherms by a comparative method) was pronounced to a lesser degree for the sorption of CO2. At the same time, the presence of supermicropores in activated carbon samples resulted in overestimated values of surface areas. A dynamic method was proposed to measure the spectra of CO2 desorption at 195–260 K using a SORBI-MS system for evaluating the binding energy of sorbate molecules with the surface.  相似文献   

10.
An apparatus based on the static-analytic method was used to measure the vapor–liquid equilibria (VLE) for CO2 + alkanol systems. Equilibrium measurements for the CO2 + 1-propanol system were performed from 344 to 426 K. For the case of the CO2 + 2-propanol system, measurements were made from 334 to 443 K, and for the CO2 + 1-butanol were obtained from 354 to 430 K. VLE data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules. Moreover, compressed liquid densities for the n-dodecane and n-tridecane were obtained via a vibrating tube densitometer at temperatures from 313 to 363 K and pressures up to 25 MPa. The Starling and Han (BWRS), and The five-parameter Modified Toscani-Swarcz (MTS) equations were used to correlate them. The experimental density data were compared with those from literature, and with the calculated values obtained from available equations for these n-alkanes.  相似文献   

11.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

12.
Vapour–liquid equilibrium measurements for binary and ternary (carbon dioxide + β-myrcene and carbon dioxide + β-myrcene + hydrogen) systems have been carried out at 323.15 K and pressures in the range from 7 MPa to the critical pressure of the binary mixture and at pressures from 10 to 14 MPa for the investigated ternary systems. Samples from the coexisting phases were taken, and compositions were determined experimentally. Results were correlated using the Peng–Robinson and the Soave–Redlich–Kwong equations of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and applied mixing rule for the system of CO2 + β-myrcene and of CO2 + β-myrcene + H2 were obtained. Additionally, the volume expansion of the liquid phase for the binary mixtures (carbon dioxide + β-myrcene and carbon dioxide + limonene) were measured at 323.15 K and at pressures from 4 MPa up to very close to the critical pressure of the mixture. The ratio of liquid phase total volumes at the given pressure and at 4 MPa was calculated.  相似文献   

13.
The viscosities of the mixtures 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) + CO2 and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) + CO2 were measured with a rolling ball viscometer. The CO2 mole fraction for one mixture ranged up to 0.434 and the other up to 0.447. The viscosities were measured at 293.15-353.15 K and 10-20.0 MPa. The experimental uncertainty in viscosity was estimated to be within ±3.0%. The experimental data were compared with McAllister's three-body model, which correlated with the experimental data within average absolute deviations of 5.9%.  相似文献   

14.
This study sought to evaluate the ability of near-infrared reflectance spectroscopy (NIRS) to classify intact green asparagus, in refrigerated storage under controlled atmosphere, by storage time and post-harvest treatments applied. A total of 468 green asparagus (Asparagus officinalis, L., cultivar UC-157) were sampled after 7, 14, 21 and 28 days of refrigerated storage (2 °C, 95% R.H.) under three controlled atmosphere (CA) treatments: air (21 kPa O2 + 0.3 kPa CO2), CA1 (5 kPa O2 + 5 kPa CO2) and CA2 (10 kPa O2 + 10 kPa CO2). Two commercially available spectrophotometers were evaluated for this purpose: a scanning monochromator (SM) of 400-2500 nm and a combination of diode array and scanning monochromator (DASM) of 350-2500 nm. Models developed using partial least squares 2-discriminant analysis (PLS2-DA) correctly classified between 81-100% of samples by post-harvest storage time, depending on the instrument used. Using similar models, the DASM instrument correctly classified 85% of samples by post-harvest treatment, compared with 72% using the SM. These results confirmed that NIR spectroscopy, coupled with the use of chemometric techniques, provides a reliable, accurate method of predicting the shelf-life of asparagus under different storage conditions and as a function of post-harvest treatment applied; the method can be readily applied at industrial level.  相似文献   

15.
In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO–MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO–MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N2 sorption–desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area of the RGO–MWNTs, the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO2) with four well-separate peaks was achieved at the RGO–MWNTs modified electrode. The linear response ranges for HQ, CC, PC and NO2 were 8.0–391.0 μM, 5.5–540.0 μM, 5.0–430.0 μM and 75.0–6060.0 μM, correspondingly, and the detection limits (S/N = 3) were 2.6 μM, 1.8 μM, 1.6 μM and 25.0 μM, respectively. The outstanding film forming ability of RGO–MWNTs hybrid materials endowed the modified electrode enhanced stability. Furthermore, the fabricated sensor was applied for the simultaneous determination of HQ, CC, PC and NO2 in the river water sample.  相似文献   

16.
Vapour–liquid equilibrium measurements for binary and ternary systems containing carbon dioxide, 1-propanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids are presented in this work. The binary CO2 + 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide system at 313.15 K at pressure range from 2 to 14.4 MPa was examined. The obtained phase envelop shows that even at low pressure of CO2 the solubility of the gas in the ionic liquid is high. The ternary phase equilibria were studied at 313.15 K and pressures in the range from 9 to 12 MPa. The ternary phase diagrams show that higher CO2 pressure diminishes the miscibility gap.  相似文献   

17.
In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N2 adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H2SO4 at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors.  相似文献   

18.
Granular and monolith carbon materials were prepared from African palm shell by chemical activation with H3PO4, ZnCl2 and CaCl2 aqueous solutions of different concentrations. Adsorption capacity of carbon dioxide and methane were measured at 298 K and 4,500 kPa, and also of CO2 at 273 K and 100 kPa, in a volumetric adsorption equipment. Correlations between the textural properties of the materials and the adsorption capacity for both gases were obtained from the experimental data. The results obtained show that the adsorption capacity of CO2 and CH4 increases with surface area, total pore volume and micropore volume of the activated carbons. Maximum adsorption values were: 5.77 mmol CO2 g?1 at 273 K and 100 kPa, and 17.44 mmol CO2 g?1 and 7.61 mmol CH4 g?1 both at 298 K and 4,500 kPa.  相似文献   

19.
We report on a detailed textural analysis of mechanochemically synthesized MOF-199 including N2 adsorption-desorption and CO2 adsorption isotherms data at 77 K and 273 K (up to atmospheric pressure), respectively, and CH4 adsorption data at 298 K (up to 35 bar). We used the isotherm adsorption data to determine the micropore volume of the MOF-199 structures, to establish their methane uptake capacity and to understand how these properties depended on the Ethanol/BTC ratio used during the synthesis. The maximum methane uptake capacity for our specimens was recorded at 130 v/v at 35 bars. These results open an avenue for a better understanding of alternative manufacturing processes of MOF structures for gas storage applications.  相似文献   

20.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号