首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

2.
The complex phase relationships near the BaO-poor region of the quaternary Ba-Sm-Y-Cu-O oxide system prepared in pure air (O2p=22 kPa, 950 °C) and in 0.1% O2 (O2p=100 Pa, 810 °C) have been determined. This investigation also included the subsolidus compatibilities in ten subsystems (Ba-Sm-Y-O, Ba-Sm-Cu-O, Ba-Y-Cu-O, Sm-Y-Cu-O, Ba-Sm-O, Ba-Y-O, Ba-Cu-O, Sm-Y-O, Sm-Cu-O, and Y-Cu-O), and the homogeneity range of five solid solutions (Ba(SmxY2−x)CuO5, (Sm,Y)2O3, (Sm,Y)2CuO4, (Y,Sm)2Cu2O5, and Ba(Sm,Y)2O4). The single phase range of the superconductor solid solution, (Ba2−xSmx)(Sm1−yYy)Cu3O6+z, and the phase compatibilities in its vicinity, which are particularly important for processing, are described in detail. The phase equilibrium data of the Ba-Sm-Y-Cu-O system will enable the improvement of the intrinsic superconducting properties of second-generation wires, and facilitate the flux-pinning process.  相似文献   

3.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

4.
LaFe1−xNixO3−δ (x=0.1−1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1−xNixO3−δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3−δ-“LaNiO3−δ” cross-section of the phase diagram of the La-Fe-Ni-O system has been proposed in the range of oxygen partial pressure −15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1−xNixO3−δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1−xNixO3−δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively.  相似文献   

5.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

6.
Ba(R,R′)2CuO5 (R,R′=lanthanides and Y) plays an important role as a flux-pinning agent in enhancing the superconducting properties of the Ba2(R,R′)Cu3O6+x (R,R′=lanthanides and Y) coated conductors. Using X-ray diffraction and neutron diffraction, we found that the Ba(NdxY2−x)CuO5 solid solution adopts two structure types. In the Nd-rich region (1.8?x?2.0), the materials are of brown color (commonly referred to as the ‘brown phase’), and the structure is tetragonal with space group I4/mbm (no. 127). In the Y-rich region (0.0?x?1.4), the materials are green (commonly referred to as the ‘green phase’) and the structure is orthorhombic with space group Pnma (no. 62). A two-phase region (1.4<x<1.8) exists between the orthorhombic and tetragonal phases. The crystal chemistry and crystallography of the orthorhombic ‘green phase’ series, Ba(NdxY2−x)CuO5 (isostructural to BaY2CuO5), are discussed in this paper.  相似文献   

7.
The crystal chemistry, electronic structure, and electrical and magnetic properties of the novel perovskite-related nickel oxides Sr3Fe2−xNixO7−δ with 0?x?1.0 have been studied. X-ray diffraction and selected area electron diffraction (ED) data indicate that the samples have a tetragonal (Space group I4/mmm) structure. ED patterns and high-resolution images reveal the presence of a regular stacking along the c-axis for the x=1.0 sample. The lattice parameters, oxygen content, and average oxidation state of iron and nickel decrease with increasing Ni content. The electronic structure of the x=1.0 sample was studied by M 2p X-ray photoelectron spectroscopy (XPS). An analysis of the spectra using the cluster model indicates that this material is in the negative charge-transfer regime and the ground state is dominated by the 3dn+1L configuration with 2p holes (L) in the oxygen band. The insulator states are stabilized due to a p-p type band gap that arises because the p-d transfer integral Tσ dominates over the O 2p bandwith. Although magnetic measurements reveal the presence of ferromagnetic interactions that lead to magnetic frustration at , no long-range magnetic order was observed for the samples with x?0.3. The electrical resistivity decreases with increasing Ni content as the p-p band gap tend to close due to the reduction of the Tσ value. Negative magnetoresistance (∼−24% for x=0.6 and −7% for x=1.0 at 20 K and 9 T) was observed for the Ni containing samples.  相似文献   

8.
Single crystals of both Ba7Li3Ru4O20 and Ba4NaRu3O12 were grown from reactive molten hydroxide fluxes. Ba7Li3Ru4O20 is a 7L-layer perovskite-related phase resulting from the stacking of six [AO3] layers and one oxygen deficient [AO2] layer, thereby creating LiO4 tetrahedra in addition to the LiO6 octahedra and face-sharing Ru2O9 bi-octahedra formed from the [AO3] layers. The compound crystallizes in the space group with a=5.7927(1) Å and c=50.336(2) Å, Z=3. Ba4NaRu3O12 crystallizes in the space group P63mc with lattice parameters of a=5.8014(2) Å and c=19.2050(9) Å, Z=2. Ba4NaRu3O12 is identical to a previously reported neutron refinement structure. The magnetic properties of Ba7Li3Ru4O20 are also reported.  相似文献   

9.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

10.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

11.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

12.
Amorphous precursors to nitrogen-doped TiO2 (NTP) and pure TiO2 (ATP) powders were synthesized by hydrolytic synthesis and sol-gel method (SGM), respectively. Corresponding crystalline phases were obtained by thermally induced transformation of these amorphous powders. From FT-IR and XPS data, it was concluded that a complex containing titanium and ammonia was formed in the precipitate stage while calcination drove weakly adsorbed ammonium species off the surface, decomposed ammonia bound on surface of precipitated powder and led to substitution of nitrogen atom into the lattice of TiO2 during the crystallization. The activation energies required for grain growth in amorphous TiO2−xNx and TiO2 samples were determined to be 1.6 and 1.7 kJ/mol, respectively. Those required for the phase transformation from amorphous to crystalline TiO2−xNx and TiO2 were determined to be 129 and 142 kJ/mol, respectively. A relatively low temperature was required for the phase transformation in NTP sample than in ATP sample. The fabricated N-doped TiO2 photocatalyst absorbed the visible light showing two absorption edges; one in UV range due to titanium oxide as the main edge and the other due to nitrogen doping as a small shoulder. TiO2−xNx photocatalyst demonstrated its photoactivity for photocurrent generation and decomposition of 2-propanol (IPA) under visible light irradiation ().  相似文献   

13.
Phase relations at 700 °C, 800 °C and solidus temperatures have been derived for the clathrate system Ba8CuxGe46−xyy via X-ray single crystal and powder diffractometry combined with electron probe micro analysis and differential thermal analysis. The ternary clathrate phase derives from binary Ba8Ge433 and extends up to x=6. Structure investigations define cubic primitive symmetry with the space group type consistent with a clathrate type I structure throughout the entire homogeneity region 0<x?6 but defect-free Ba8CuxGe46−x exists for x?5.5.  相似文献   

14.
Correlation of crystal structure with electric field gradient (EFG) in the fluorite- and pyrochlore-type compounds in the Gd2O3-ZrO2 system GdxZr1−xO2−x/2 with 0.18?x?0.62 were investigated by 155Gd Mössbauer spectroscopy, powder X-ray diffraction and point-charge model (PCM) calculation. An intermediate ordered pyrochlore phase forms for 0.45?x?0.55, sandwiched with a disordered fluorite phase for 0.18?x<0.45 and 0.55<x?0.62. Some 155Gd Mössbauer parameters, especially the quadrupole coupling constant (e2qQ), were found to exhibit a characteristic maximum around the ideal-pyrochlore Gd2Zr2O7 (x=0.50) composition. The validity of the proposed pyrochlore-based structural model was examined by comparing the experimental values of EFG at the Gd sites with those calculated by the PCM calculations.  相似文献   

15.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

16.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

17.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

18.
A series of lithium europium double tungsto-molybdate phosphors LiEu(WO4)2−x(MoO4)x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5D07F2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO4)2−x(MoO4)x is investigated and discussed.  相似文献   

19.
The single-phase region of La1−xSrxCrO3 (x=0.1, 0.2, 0.3) was precisely determined as a function of temperature, PO2 and Sr content. The powders with the nominal composition of La1−xSrxCrO3 were equilibrated under various conditions, and then identified by XRD analyses. To confirm the equilibration, two independent experiments were performed for each composition observing (i) the precipitation of the second phase from a single-phase solid solution, and (ii) the formation of the single phase from the constituent oxides. Two kinds of second phases, SrCrO4 and an unknown phase, were observed depending on the conditions. The second phases tended to appear at low temperature, in high PO2 and with a large Sr content. The single-phase regions obtained via the two equilibration routes were in good agreement with each other. The thermodynamic calculations on the supposition of ideality of the solid solution essentially reproduced the experimental results. When this material is used as the interconnects of solid oxide fuel cells, much attention should be paid to its relatively narrow solubility range of Sr; for example, the solubility limit is approximately 0.1 under a typical cathode-side condition (1273 K, air).  相似文献   

20.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号