首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses and characterization of novel ruthenium(II) complexes containing bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza), a new class of scorpionate ligands, are reported herein. [RuCl(bdmpza)(η4-1,5-cyclooctadiene)] (1) was found to be a versatile precursor to synthesize a wide range of new ruthenium(II) complexes with the bdmpza ligand. The treatment of 1 with pyridine (py), diphenylphosphinoethane (dppe), 2,2′-bipyridyl (bpy), 1,10-phenanethroline (phen), or bispicolylamine (Hbpica) in refluxing N,N-dimethylformamide resulted in displacement of the 1,5-cyclooctadiene ligand to afford [RuCl(bdmpza)(py)2] (2), [RuCl(bdmpza)(dppe)] (3), [RuCl(bdmpza)(bpy)] (4), [RuCl(bdmpza)(phen)] (5), and [Ru(bdmpza)(Hbpica)]Cl (6Cl) in good yields, respectively. The structures of 14, and 6 were determined by X-ray structure analyses.  相似文献   

2.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

3.
With the readily available fluorous alkanols RfCH2OH, a series of novel fluorous-ponytailed bpy ligands, 4,4′-bis(RfCH2OCH2)-2,2′-bpy (1ae), were prepared and treated with [PdCl2(CH3CN)2] to result in the corresponding novel Pd complexes [PdCl2(4,4′-bis(RfCH2OCH2)-2,2′-bpy)] (2ae) where Rf = n-C3F7 (a), HCF2(CF2)3 (b), HCF2(CF2)7 (c), n-C8F17 (d), n-C10F21 (e). The new ligands and Pd complexes were spectroscopically characterized by multi-nuclei NMR (1H, 19F and 13C), FTIR and high resolution mass (FAB). The structure for the Pd complex 2b, the first with fluorinated ponytails on bpy and not on phosphine, was also established by a single crystal X-ray diffraction study. The TGA data of both ligands and Pd complexes indicated that the Pd-complexes were resistant to higher temperatures than the corresponding ligands. The Pd catalysts derived from 2ac showed an almost quantitative conversion and could be reused for eight runs with Heck reactions, in that the products and unspent reactants were directly removed by distillation. With the highest fluorine content in the series, Pd complex 2e was successfully applied in the Heck reaction using the fluorous biphasic catalysis strategy.  相似文献   

4.
Phytochemical investigations on the organic extracts of the leaves of Suregada multiflora have led to the isolation of ten tetracyclic diterpene lactones 1-10, members of a rare class of abiatene diterpene lactones. Compounds 1-5 were found to be new. The structures of gelomulides F (11), D (12) and E (13) were revised on the basis of 2D NMR and X-ray diffraction evidences. Compounds 1 and 2 contain an epoxy linkage between C-8 and C-14, whereas compounds 3-5 were identified as 8,14-dihydroxy analogues of diterpene lactones. The stereochemical assignments in new compound 1 are based on X-ray diffraction analysis. Compounds 6 and 7 were identified as the known gelomulides A, G. The structures of compounds 7-9 were unambiguously confirmed by X-ray diffraction analyses.  相似文献   

5.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

6.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

7.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

8.
Three dimethylgallium complexes of type Me2GaL [L = 2-methoxylphenylmethyleneiminophenolato (1), N-(4-N,N′-dimethylamino)phenylmethyleneiminophenolato (2), N-(2-naphthyl)methyleneiminophenolato (3)] have been synthesized by the reaction of trimethylgallium with appropriate N-arylmethyleneiminophenol. The complexes obtained have been characterized by elemental analysis, 1H, 13C{1H} NMR, IR and mass spectroscopy, respectively. The solid structure of 2 has been determined by X-ray single crystal analysis. The gallium atom was bonded by an oxygen atom and coordinated by an imine nitrogen atom forming one five-membered ring. The stable dimmer was formed by the coordination of bridging oxygen atom of phenolate to another gallium atom. The photoluminescence of complexes 1-3 were studied. The maximum emission wavelengths of 1-3 are between 305 and 320 nm upon radiation by UV light. The electroluminescent properties of diodes using 1-3 as emitting material were measured. The blue/green electroluminescence has been observed.  相似文献   

9.
Two novel one-dimensional polymeric cyano-bridged platinum(II) complexes of N-(2-hydroxyethyl)-ethylenediamine (hydeten), [MII(hydeten)Pt(CN)2(μ-CN)2]n (MII = ZnII (1) and CdII (2)), were synthesized and characterized by physico-chemical methods (elemental analysis, IR spectroscopy and thermoanalytical measurements) and X-ray diffraction. Thermal behaviours of 1 and 2 were followed using TG and DTA (DSC) techniques. The 1D chain structures of 1 and 2 were verified by X-ray diffraction studies. According to the positions of the bridging cyano groups, in complex 1 the polymeric chains are built up via the 2,2-CT type, while in complex 2 the polymeric chains are built up via the 2,2-TT type.  相似文献   

10.
Two new N-pyrazole, P-phosphinite hybrid ligands 3-(3,5-dimethyl-1H-pyrazol-1-yl)propyldiphenylphosphinite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L4) are presented. The reactivity of these ligands and two other ligands reported in the literature (3,5-dimethyl-1H-pyrazol-1-yl)methyldiphenylphosphinite (L1) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L2) towards [RhCl(CO)2]2 (1) have been studied and complexes [RhCl(CO)L] (L = L2 (2), L3 (3) and L4 (4)) have been obtained. For L1 only decomposition products have been achieved. All complexes were fully characterised by analytical and spectroscopic methods and the resolution of the crystalline structure of complexes 2 and 3 by single-crystal X-ray diffraction are also presented. In these complexes, the ligands are coordinated via κ2(N,P) to Rh(I), forming metallocycles of seven (2 and 4) or eight (3) members and finish its coordination with a carbonyl monoxide and a trans-chlorine to phosphorus atom. In both complexes, weak intermolecular interactions are present. NMR studies of complexes 2-4 show the chain N-(CH2)x-O becomes rigid and the protons diastereotopic.  相似文献   

11.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

12.
Lithium-containing heterometallic complexes with cobalt (Li2Co2(Piv)6(2,4-Lut)2 (2, Piv is the pivalate anion) and Li2Co2(O2CCH2But)6(2,4-Lut)2 (3)) and with nickel (Li2Ni2(Piv)6(DME)2 (4) and Li2Ni2(Piv)6(2,2′-bpy)2 (5)) were synthesized. The structures of the complexes were established by X-ray diffraction. The magnetic properties of complexes 2 and 4 were studied. The thermal behavior of compounds 2, 3, and 5 was investigated. It was shown that the compounds under study can be used as molecular precursors for the synthesis of lithium cobaltate and nickelate.  相似文献   

13.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

14.
Stille coupling between tributyl-(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-stannane and 4-bromopyridine resulted in the preparation of the new pyridine/thiophene hybrid ligand 4-(2,3-dihydro-thieno[3,4-b][1,4]dioxin-5-yl)-pyridine [4-py-EDOT] (1). Reaction of 1, 4-thiophen-2-yl-pyridine (2), or 4-[2,2]bithiophenyl-5-yl-pyridine (3) with ClRe(CO)5 resulted in the isolation of complexes 4-6, ClRe(L)2(CO)3, where L=1, 2, or 3 respectively. The solid-state structure of 4 was determined by X-ray crystallography, which clearly shows the fac arrangement of the three CO ligands and the two 4-py-EDOT ligands arranged cis to one another. The metal complexes 4-6 have been characterized by 1H and 13C NMR, ESI or FAB MS, FTIR, UV-Vis, fluorescence, and elemental analysis.  相似文献   

15.
{[Pb3(CPIDA)2(H2O)3]·H2O}n1, {[Cd3(CPIDA)2(H2O)4]·5H2O}n2, [Cd(HCPIDA)(bpy)(H2O)]n3 (bpy=4,4′-bipyridine) and {[Co3(CPIDA)2(bpy)3(H2O)4]·2H2O}n4 were synthesized with N-(4-carboxyphenyl) iminodiacetic acid (H3CPIDA). In 1, the CPIDA3− ligands adopt chelating and bridging modes with Pb(II) to possess a 3D porous framework. In 2D-layer 2, the CPIDA3− ligands display a simple bridging mode with Cd(II). The 2D layers have parallelogram-shaped channels along a axis. With bpy ligands, the HCPIDA2− ligands in 3 show more abundant modes, but 3 still displays a 2D sheet on bc plane for the unidentate bpy molecules. However, in 3D-framework 4, the bpy ligands adopt bridging bidentate at a higher pH value and the CPIDA3− ligands show bis-bidentate modes with Co(II). Additionally, 2D correlation analysis of FTIR was introduced to ascertain the characteristic adsorptions location of the carboxylate groups with different coordination modes in 4 with thermal and magnetic perturbation. Compounds 1, 2 and 4 exhibit the fluorescent emissions at room temperature.  相似文献   

16.
A series of mononuclear ruthenium complexes [RuCl(CO)(PMe3)3(CHCH-C6H4-R-p)] (R = H (2a), CH3 (2b), OCH3 (2c), NO2 (2d), NH2 (2e), NMe2 (2f)) has been prepared. The respective products have been characterized by elemental analyses, NMR spectrometry, and UV-Vis spectrophotometry. The structures of complexes 2c and 2d have been established by X-ray crystallography. Electrochemical studies have revealed that electron-releasing substituents facilitate monometallic ruthenium complex oxidation, and the substituent parameter values (σ) show a strong linear correlation with the anodic half-wave or oxidation peak potentials of the complexes.  相似文献   

17.
Following the strategy of using bifunctional phosphonic acids for the synthesis of new metal phosphonates, the flexible ligand 2-phosphonoethanesulfonic acid, H2O3P-C2H4-SO3H (H3L), was used in a high-throughput (HT) and microwave investigation of rare earth phosphonatoethanesulfonates. The HT-investigation led to six isotypic compounds Ln(O3P-C2H4-SO3) with Ln=Ho (1), Er (2), Tm (3), Yb (4), Lu (5) and Y (6). The syntheses were scaled-up in glass reactor tubes in order to obtain larger amounts for a detailed characterization. Based on these results all compounds could be also synthesized by microwave-assisted heating and the influence of reaction time and stirring rate during the synthesis was established. For compound 2 the crystal structure was determined by single-crystal X-ray diffraction. The compounds contain isolated slightly distorted LnO6 octahedra that are connected by the phosphonate and sulfonate groups into a three-dimensional framework. Thermogravimetric investigations demonstrate the high thermal stability of the compounds up to 460 °C.  相似文献   

18.
This paper describes the synthesis of the first Ni(II) complexes with pyridoxal semicarbazone (PLSC), viz. Ni(PLSC)Cl2 · 3.5H2O (1), [Ni(PLSC)(H2O)3](NO3)2 (2), Ni(PLSC)(NCS)2 · 4H2O (3), [Ni(PLSC-2H)NH3] · 1.5H2O (4), as well as two new complexes with pyridoxal thiosemicarbazone (PLTSC), [Ni(PLTSC-H)py]NO3 (5) and [Ni(PLTSC-H)NCS] (6). Complexes 13 are paramagnetic and have most probably an octahedral structure, for complex 2 this was proved by X-ray diffraction analysis. In contrast, complexes 46 are diamagnetic and have a square-planar structure, and in the case of complex 5 this was also confirmed by X-ray structural analysis. In all cases the Schiff bases are coordinated as tridentate ligands with an ONX (X = O, PLSC; X = S, PLTSC) set of donor atoms. With the complexes involving the neutral form of PLSC and the monoanionic form of PLTSC, the PL moiety is in the form of a zwitterion. In addition to the above-mentioned techniques, all the complexes were characterized by measuring their molar conductivities, UV–Vis and partial IR spectra.  相似文献   

19.
Five two-dimensional divalent cobalt coordination polymers containing 4,4′-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared hydrothermally and structurally characterized by single-crystal X-ray diffraction. [Co(mg)(bpy)]n (1, mg=3-methylglutarate) forms a (4,4) rhomboid grid structure based on the connection of {Co2(CO2)2} dimeric units. Using the more sterically encumbered ligands 3,3-dimethylglutarate (dmg) and 3-ethyl, 3-methylglutarate (emg) generated {[Co(dmg)(bpy)(H2O)]·2H2O}n (2) and {[Co(emg)(bpy)(H2O)]·H2O}n (3), respectively. These complexes manifest {Co(CO2)}n chains linked into 2-D by aliphatic dicarboxylate and bpy ligands. The “tied-back” substituted glutarate ligand 1,1-cyclopentanediacetate (cda) afforded [Co(cda)(bpy)]n (4), and the unsubstituted glutarate (glu) generated [Co(glu)(bpy)]n (5), both of which exhibit a topology similar to that of 1. The magnetic properties of complexes 1-4 were analyzed successfully with a recently developed phenomenological chain model accounting for both magnetic coupling (J) and zero-field splitting effects (D), even though 1 and 4 contain isolated, discrete {Co2(CO2)2} dimers. The D parameter in this series varied between 21.8(8) and 48.0(9) cm−1. However weak antiferromagnetic coupling was observed in 1 (J=-2.43(4) cm−1) and 4 (J=−0.89(2) cm−1), while weak ferromagnetic coupling appears to be operative in both 2 (J=0.324(5) cm−1) and 3 (J=0.24(1) cm−1).  相似文献   

20.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号