首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

2.
Several compounds of the (Na1−xLix)CdIn2(PO4)3 solid solution were synthesized by a solid-state reaction in air, and pure alluaudite-like compounds were obtained for x=0.00, 0.25, and 0.50. X-ray Rietveld refinements indicate the occurrence of Cd2+ in the M(1) site, and of In3+ in the M(2) site of the alluaudite structure. This non-disordered cationic distribution is confirmed by the sharpness of the infrared absorption bands. The distribution of Na+ and Li+ on the A(1) and A(2)′ crystallographic sites cannot be accurately assessed by the Rietvled method, probably because the electronic densities involved in the Na+→Li+ substitution are very small. A comparison with the synthetic alluaudite-like compounds, (Na1−xLix)MnFe2(PO4)3, indicates the influence of the cations occupying the M(1) and M(2) sites on the coordination polyhedra morphologies of the A(1) and A(2)′ crystallographic sites.  相似文献   

3.
A solvothermal reaction of ZnO, HCl, H3PO4, and N,N′(3-bisaminopropyl)-1,2-ethylenediamine (BAPEN) in diethyleneglycol at 160°C yields a new zinc chlorophosphate, [C8N4H26][Zn3Cl(HPO4)3(PO4)], I. The structure comprises ZnO4, ZnO3Cl, HPO4 and PO4 tetrahedral units connected through their vertices giving rise to a layered structure with 10-membered apertures. The position of the Zn and P atoms gives rise to double-four ring like building unit with one Zn missing. The fully protonated amine molecules occupy the inter-lamellar region and interacts with the framework through N-H?O hydrogen bonds. Crystal data: M=792.85, orthorhombic, space group=Pca21 (no. 29), a=9.8410(2), b=15.0912(2), c=16.1220(4) Å, V=2394.32(8) Å3, Z=4, ρcalc=2.199 g cm−3, μ(MoKα)=3.443 mm−1, R1=0.0520, wR2=0.1256 and S=1.054.  相似文献   

4.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

5.
The Mn5−xCox(HPO4)2(PO4)2(H2O)4 (x=1.25, 2, 2.5, 3) finite solid solution has been synthesized by mild hydrothermal conditions under autogeneous pressure. The phases crystallize in the C2/c space group with Z=4, belonging to the monoclinic system. The unit-cell parameters obtained from single crystal X-ray diffraction are: a=17.525(1), b=9.0535(6), c=9.4517(7) Å, β=96.633(5) ° being R1=0.0436, wR2=0.0454 for Mn75Co25; a=17.444(2), b=9.0093(9), c=9.400(1) Å, β=96.76(1) ° being R1=0.0381, wR2=0.0490 for Mn60Co40; a=17.433(2), b=8.9989(9), c=9.405(1) Å, β=96.662(9) ° being R1=0.0438, wR2=0.0515 for Mn50Co50 and a=17.4257(9), b=8.9869(5), c=9.3935(5) Å, β=96.685(4) ° being R1=0.0296, wR2=0.0460 for Mn40Co60. The structure consists of a three dimensional network formed by octahedral pentameric entities (Mn,Co)5O16(H2O)6 sharing vertices with the (PO4)3− and (HPO4)2− tetrahedra. The limit of thermal stability of these compounds is, approximately, 165 °C, near to this mean temperature the phases loose their water content in two successive steps. IR spectra show the characteristic bands of the water molecules and the phosphate and hydrogen-phosphate oxoanions. The diffuse reflectance spectra are consistent with the presence of MO6 octahedra environments in slightly distorted octahedral geometry, except for the M(3)O6 octahedron which presents a remarkable distortion and so a higher Dq parameter. The mean value for the Dq and B-Racah parameter for the M(1),(2)O6 octahedra is 685 and 850 cm−1, respectively. These parameters for the most distorted M(3)O6 polyhedron are 825 and 880 cm−1, respectively. The four phases exhibit antiferromagnetic couplings as the major magnetic interactions. However, a small spin canting phenomenon is observed at low temperatures for the two phases with major content in the anisotropic-Co(II) cation.  相似文献   

6.
The structure of a complex, disordered type A-B carbonate apatite (CAp) of approximate composition Ca10(PO4)6−y(CO3)x+(3/2)y(OH)2−2x, x-0.7, y-0.6, synthesized at 3 GPa, 1400°C has been determined using single-crystal X-ray diffraction and FTIR spectroscopy at room temperature and pressure. Crystal data are: hexagonal, space group P63/m, Z=1; a=9.5143(3), c=6.8821(2) Å, V=539.5 Å3, and R=0.025. There are three structural locations for the carbonate ion. The channel carbonate is mainly in the closed vertical configuration of the structure, with two of its oxygen atoms close to the c-axis (A1 carbonate; IR bands at 1541 and 1449 cm−1), but subordinate amounts are also located in an open vertical configuration (A2 carbonate; IR bands at 1563 and 1506 cm−1). The type B carbonate ion is located close to the sloping faces of the PO4 tetrahedron (IR bands at 1474 and 1406 cm−1), confirming earlier inferences from polarized IR spectra.  相似文献   

7.
Three new silver indium double phosphates Ag3In(PO4)2 (I), β-(II) and α-Ag3In2(PO4)3 (III) were synthesized by solid state method (I and II—700 °C, III—900 °C). Compounds I and II crystallize into a monoclinic system (I—sp. gr. C2/m, Z=2, a=8.7037(1)Å, b=5.4884(1)Å, c=7.3404(1)Å, β=93.897(1)°; II—sp. gr. C2/c, Z=4, a=12.6305(1)Å, b=12.8549(1)Å, c=6.5989(1)Å, β=113.842(1)°), and compound III crystallize into a hexagonal system (sp. gr. R-3c, Z=6, a=8.9943(1)Å, c=22.7134(1)Å). Their crystal structures were determined by the Rietveld analysis (I—Rp=6.47, Rwp=8.54; II—Rp=5.67, Rwp=6.40; III—Rp=7.30, Rwp=9.91). Structure of Ag3In(PO4)2 is related to the sodium chromate structure type and is isotypic to α-Na3In(PO4)2. The polymorphous modifications of β- and α-Ag3In2(PO4)3 are isostructural to sodium analogs (β- and α-Na3In2(PO4)3) and are related to alluaudite (II) and NASICON (III) structure types. Compounds I and II are not stable at temperature above 850 °C. Ag3In(PO4)2 is decomposed providing silver orthophosphate Ag3PO4 and α-Ag3In2(PO4)2. β-Ag3In2(PO4)3 is transformed to α-Ag3In2(PO4)3.  相似文献   

8.
A new complete solid solution of NASICON-type compounds between LiZr2(PO4)3 and La1/3Zr2(PO4)3 was evidenced with the general formula Li1−xLax/3Zr2(PO4)3 (0?x?1). These phases were synthesized by a complex polymerizable method and structurally characterized from Rietveld treatment of their X-ray and neutron powder diffraction data. This solid solution results from the substitution mechanism Li+→1/3La3++2/3□ leading to an increase of the vacancies number correlated to an increase of the La content. According to this substitution mechanism, the general formula can then be written Li1−xLax/32x/3Zr2(PO4)3 (0?x?1) in order to underline the correlation between the La content and the vacancies rate. For all the compounds, the structure is clearly related to that of the NASICON family with three crystallographic domains evidenced. For 0?x?0.5, all the members adopt at high temperature the typical NASICON-type structure (s.g. Rc), while at lower temperature, their structure distorts to a triclinic form (s.g. C 1¯), as observed for LiZr2(PO4)3 prepared above 1100 °C. Moreover, in this domain, the reversible transition is clearly soft and the transition temperature strongly depends of the x value. For 0.6?x?0.9, the compounds crystallize in a rhombohedral cell (s.g. R3¯), while for x=1, the phase La1/3Zr2(PO4)3 is obtained (s.g. P3¯, Z=6, a=8.7378(2) Å, c=23.2156(7) Å).This paper is devoted to the structure analysis of the series Li1−xLax/3Zr2(PO4)3 (0?x?1), from X-ray and neutron powder thermo diffraction and transmission electron microscopy (TEM) studies.  相似文献   

9.
A single crystal of a new sodium calcium iron (III) phosphate, Na4CaFe4(PO4)6, has been synthesized by a flux method and characterized by X-ray diffraction, Mössbauer spectroscopy and magnetic susceptibility measurements. The compound crystallizes in the monoclinic space group C2/c(a=12.099(5) Å, b=12.480(5) Å, c=6.404(2) Å, β=113.77(3)°, Z=2, R1=0.022, Rw2=0.066). The crystal structure belongs to the alluaudite type, characterized by the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The open framework results from Fe2O10 units of edge-sharing FeO6 octahedra, which alternate with M(1)O6 octahedra (M(1)=Na+Ca) that form infinite chains. These chains are linked together through the common corners of PO4 tetrahedra yielding two distinct tunnels of sodium cation occupation. This compound is antiferromagnetic with a Néel temperature of 35 K. Mössbauer parameters are consistent with the structural results.  相似文献   

10.
An ammonium indium hydrogen phosphate, NH4In(OH)PO4, was synthesized under mild hydrothermal conditions, and the crystal structure was characterized by single-crystal X-ray diffraction method. The compound crystallizes with the RbIn(OH)PO4 type with the following data: Mr=244.84, tetragonal, tP104, P43212 (No.96), a=9.416(2) Å, c=11.159(3) Å, V=989.9(3) Å3, Z=8, Dx=3.288 g cm−3, λ=0.71073 Å, μ=50.34 cm−1, F(000)=928, T=293 K, R1=0.0606, wR2=0.1472 for 91 variables and 1813 contributing unique reflections. The structure is characterized by chiral InO4(OH)2 chains along the c axis formed by sharing OH corners. The chains are isolated by PO4 tetrahedra leading to a three-dimensional framework structure with channels occupied by NH4+ ions. The framework structure is similar to that of KIn(OH)PO4 and γ-NaTiOPO4. The hydrogen bonds formed by NH4+ with the polyhedral oxygen atoms play an important role in the anisotropic changes of the lattice with respect to its alkali metal analogues. The topological construction of the title structure can be considered as an augmented 4,6-net with larger porosity.  相似文献   

11.
Two mixed metal organic-inorganic hybrid compounds, CuVO2(4,4′-bpy)(PO4), 1, and CuVO2(4,4′-bpy)(AsO4), 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the monoclinic space group C2/c (No. 15) with a=21.941(2) Å, b=8.0915(7) Å, c=15.856(1) Å, β=110.424(2)°, Z=8, and R1=0.037 for 1, and a=21.923(2) Å, b=8.2447(9) Å, c=16.176(2) Å, β=110.967(2)°, Z=8, and R1=0.041 for 2. The structure consists of bimetallic oxide layers covalently linked through 4,4′-bpy pillars into a 3D framework. Each oxide layer is constructed from corner-sharing VO4 and PO4 tetrahedra and CuN2O3 square pyramids. On the basis of magnetic susceptibility study of 1, bond-valence calculation and the presence of dioxovanadium unit, the Cu atom is divalent and the V atom is pentavalent.  相似文献   

12.
Crystal structures of synthetic phosphates Ce0.33Zr2(PO4)3, Eu0.33Zr2(PO4)3 and Yb0.33Zr2(PO4)3 have been refined by Rietveld method using powder diffraction data. Unit cell parameters: a=8.7419 (4), c=23.128 (2) Å; a=8.7659 (1), c=22.822 (1) Å; a=8.8078 (4), c=22.485 (3) Å, respectively; Z=6. Values of final R-factors in isotropic approximation: Rwp=4.00, Rwp=3.33, Rwp=4.12%, respectively. New space group Pc has been established for the compounds with general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. It has been confirmed that the synthetic phosphates with general formula Ln0.33Zr2(PO4)3 belong to the NZP (sodium zirconium phosphate) structure type.  相似文献   

13.
Sodium-bearing type A-B carbonate chlorapatites {CCLAP; Ca10−(y+z)Nayz[(PO4)6−(y+2z)(CO3)y+2z][Cl2−2x(CO3)x], with xy≈4z≈0.4} have been synthesized from carbonate-rich melts at 1350-1000 °C and 1.0 GPa, and investigated by single-crystal X-ray structure and FTIR spectroscopy. Typical crystal and compositional data are: a=9.5321(4) Å, c=6.8448(3) Å, space group P63/m, R=0.027, Rw=0.025, x=0.37(3), y=0.57(2). Crystal-chemical features and FTIR spectra are similar to Na-bearing type A-B carbonate hydroxyapatites (CHAP) and fluorapatites (CFAP) reported recently. The molar amounts of Na and channel (type A) carbonate maintain a near 1:1 ratio in all three composition series, confirming that the Na cation and A and B carbonate ion substituents exist as a defect cluster within the apatite matrix, to facilitate charge compensation and spatial accommodation. Uptake of carbonate is significantly lower in CCLAP than in CHAP for similar conditions of crystal synthesis.  相似文献   

14.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

15.
Two new alkali uranyl oxychloro vanadates M7(UO2)8(VO4)2O8Cl with M=Rb, Cs, have been synthesized by solid-state reactions and their structures determined from single-crystal X-ray diffraction data. They crystallize in the orthorhombic system with space groups Pmcn and Pmmn, respectively. The a and b unit cell parameters are almost identical in both compounds while the c parameter in the Rb compound is doubled: Rb—a=21.427(5) Å, b=11.814(3) Å, c=14.203(3) Å, V=3595.1(1) Å3, Z=4, ρmes=5.93(2) g/cm3, ρcal=5.82(1) g/cm3; Cs—a=21.458(3) Å, b=11.773(2) Å, c=7.495(1) Å, V=1893.6(5) Å3, Z=2, ρmes=6.09(2) g/cm3, ρcal=6.11(1) g/cm3. A full-matrix least-squares refinement yielded R1=0.0221, wR2=0.0562 for 2675 independent reflections and R1=0.0386, wR2=0.1042 for 2446 independent reflections, for the Rb and Cs compounds, respectively. Data were collected with Mo(Kα) radiation and a charge coupled device (CCD) detector of a Bruker diffractometer. Both structures are characterized by [(UO2)8(VO4)2O8Cl]n7n layers parallel to the (001) plane. The layers are built up from VO4 tetrahedra, UO7 and UO6Cl pentagonal bipyramids, and UO6 distorded octahedra. The UO7 and UO6Cl pentagonal bipyramids are associated by sharing opposite equatorial edges to form infinite chains (UO5-UO4Cl-UO5)n parallel to the a axis. These chains are linked together by VO4 tetrahedra, UO6 octahedra, UO7 corner sharing and UO6Cl, Cl sharing. Both structures differ simply by the symmetry of the layers. The unit cell contains one centrosymmetric layer in the Cs compound, whereas in the two-layer unit cell of the Rb compound, two non-centrosymmetric consecutive layers are related by an inversion center. The layers appear to be held together by the alkali ions. The mobility of the M+ ions within the interlayer space in M7(UO2)8(VO4)2O8Cl and carnotite analog compounds is compared.  相似文献   

16.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

17.
Hydrothermal treatment of CuCl2·2H2O, MoO3, and 3,4′-dipyridylketone (3,4′-dpk) in 1:1:2 mole ratio afforded the new mixed metal oxide phases [Cu2(MoO4)2(3,4′-dpk)(H2O)] (1) or [Cu4(3,4′-dpk)4(Mo8O26)] (2), depending on the pH of the initial reaction mixture. Compound 1 possesses unique one-dimensional (1-D) [Cu2(MoO4)2(H2O)]n ribbons constructed from the linkage of {CuII4O6} tetrameric units through isolated [MoO4]2- tetrahedra. These ribbons in turn are connected into a two-dimensional (2-D) coordination polymer structure by tethering 3,4′-dpk ligands. Compound 2, containing monovalent copper ions, manifests an unprecedented “X-rail” 1-D extended structure with (628)4(66) topology formed from the bracketing of discrete [β-Mo8O26]4- anions by four chains. The variable temperature magnetic susceptibility behavior of 1 was fit to a linear tetramer model, with g=2.03(3), J1=25.8(7) cm-1 and J2=−46(1) cm-1. Antiferromagnetic inter-tetramer interactions (zJ′=−0.21(3) cm-1) were also evident. Crystallographic data: 1 monoclinic, P21/c, a=10.3911(11) Å, b=6.9502(6) Å, c=22.958(2) Å, β=100.658(7)°, V=1629.5(3) Å3, R1=0.1256, and wR2=0.2038; 2 triclinic, a=10.9000(3) Å, b=11.7912(4) Å, c=13.5584(4) Å, α=102.482(2)°, β=102.482(2)°, γ=117.481(2)°, V=1450.98(8) Å3, R1=0.0428, and wR2=0.0630.  相似文献   

18.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

19.
Employing 1-(2-Aminoethyl) piperazine as a template, a new organically templated layered zinc phosphate-phosphite (C6H17N3)[Zn4(PO4)2(HPO3)2] has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group Cc with a=5.3272(11) Å, b=17.146(3) Å, c=22.071(4) Å, β=94.58(3)°, V=2009.5(7) Å3, Z=4, R1=0.0201 (I>2σ(I)) and wR2=0.0812 (all data). The inorganic network is based on strictly alternating ZnO4 tetrahedral units and P-centered units including PO4 tetrahedra and HPO3 pseudo-pyramids forming a double layered structure that contains columns of double six-membered rings. The diprotonated 1-(2-Aminoethyl) piperazine molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

20.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号