首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.  相似文献   

2.
The surface of a protein, or a membrane, is spotted with a multitude of proton-binding sites, some of which are only a few angstroms apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Some of the released protons disperse into the bulk, but during the first few nanoseconds, the released protons can be trapped by encounter with nearby acceptor sites. This process resembles a scenario which corresponds with the time-dependent Debye-Smoluchowski equation. In the present study, we investigated the mechanism of proton transfer between sites that are only a few angstroms apart, using as a model the proton exchange between sites on a small molecule, fluorescein, having two, spectrally distinguishable, proton-binding sites. The first site is the oxyanion on the chromophore ring structure. The second site is the carboxylate moiety on the benzene ring of the molecule. Through our experiments, we were able to reconstruct the state of protonation at each site and the velocity of proton transfer between them. The fluorescein was protonated by a few nanosecond long proton pulse under specific conditions that ensured that the dye molecules would be protonated only by a single proton. The dynamics of the protonation of the chromophore were measured under varying initial conditions (temperature, ionic strength, and different solvents (H(2)O or D(2)O)), and the velocity of the proton transfer between the two sites was extracted from the overall global analysis of the signals. The dynamics of the proton transfer between the two proton-binding sites of the fluorescein indicated that the efficiency of the site-to-site proton transfer is very sensitive to the presence of the screening electrolyte and has a very high kinetic isotope effect (KIE = 55). These two parameters clearly distinguish the mechanism from proton diffusion in bulk water. The activation energy of the reaction (E(a) = 11 kcal mol(-1)) is also significantly higher than the activation energy for proton dissociation in bulk water (E(a) approximately 2.5 kcal mol(-1)). These observations are discussed with respect to the effect of the solute on the water molecules located within the solvation layer.  相似文献   

3.
In the present work, the joint use of the potential energy, the reaction electronic flux profiles and NBO analysis along the intrinsic reaction coordinate within the framework of the reaction force analysis allows us to gain insights into the mechanism of the proton transfer process in amino acids. The reaction was studied in alanine and phenylalanine in the presence of a continuum and with addition of one water molecule acting as a bridge, the results were compared to those of tryptophan. The bridging water molecule stabilizes the zwitterionic form and increases the reaction barriers by a factor of two. This result is interpreted in terms of the energy required to bring the amino acid and the water molecule closer to each other and to promote the proton transfer through the reordering of the electron density. Furthermore, the bridging water molecule induces a concerted asynchronous double proton transfer, where the transfer of the carboxyl hydrogen atom is followed by the second proton transfer to the ammonium group. In addition, a second not intervening water molecule was added, which changes the proton acceptor and donor properties of the reactive water molecule modulating the reaction mechanism. The aforementioned methods allow us to identify the order of the transferred protons and the asynchronicity, thereby, evolving as promising tools to not only characterize but also manipulate reaction mechanisms.  相似文献   

4.
The capacity to transfer protons between surface groups is an innate property of many proteins. The transfer of a proton between donor and acceptor, located as far as 6-7 A apart, necessitates the participation of water molecules in the process. In a previous study we investigated the mechanism of proton transfer (PT) between bulk exposed sites, a few ?ngstr?ms apart, using as a model the proton exchange between the proton-binding sites of the fluorescein molecule in dilute aqueous solution.1 The present study expands the understanding of PT reactions between adjacent sites exposed to water through the calculation the minimum energy pathways (MEPs) by the conjugate peak refinement algorithm2 and a quantum-mechanical potential. The PT reaction trajectories were calculated for the fluorescein system with an increasing number of water molecules. The MEP calculations reveal that the transition state is highly strained and involves a supramolecular structure in which fluorescein and the interconnecting water molecules are covalently bonded together and the protons are shared between neighboring oxygens. These findings are in accord with the high activation energy, as measured for the reaction, and indicate that PT reactions on the surface proceed by a semi- or fully concerted rather than stepwise mechanism. A similar mechanism is assumed to be operative on the surface of proteins and renders water-mediated PT reactions as highly efficient as they are.  相似文献   

5.
We investigated femtosecond and picosecond time-resolved fluorescence dynamics of a tetrameric fluorescent protein Kaede with a red chromophore (red Kaede) to examine a relationship between the excited-state dynamics and a quaternary structure of the fluorescent protein. Red Kaede was obtained by photoconversion from green Kaede that was cloned from a stony coral Trachyphyllia geoffroyi. In common with other typical fluorescent proteins, a chromophore of red Kaede has two protonation states, the neutral and the anionic forms in equilibrium. Time-resolved fluorescence measurements clarified that excitation of the neutral form gives the anionic excited state with a time constant of 13 ps at pH 7.5. This conversion process was attributed to fluorescence resonance energy transfer (FRET) from the photoexcited neutral form to the ground-state anionic form that is located in an adjacent subunit in the tetramer. The time-resolved fluorescence data measured at different pH revealed that excited-state proton transfer (ESPT) also occurs with a time constant of 300 ps and hence that the FRET and ESPT take place simultaneously in the fluorescent protein as competing processes. The ESPT rate in red Kaede was significantly slower than the rate in Aequorea GFP, which highly likely arises from the different hydrogen bond network around the chromophore.  相似文献   

6.
We present a theoretical study of a mechanism for the hydrolysis of the acyl-enzyme complex formed by a class A beta-lactamase (TEM1) and an antibiotic (penicillanate), as a part of the process of antibiotic's inactivation by this type of enzymes. In the presented mechanism the carboxylate group of a particular residue (Glu166) activates a water molecule, accepting one of its protons, and afterward transfers this proton directly to the acylated serine residue (Ser70). In our study we employed a quantum mechanics (AM1)-molecular mechanics partition scheme (QM/MM) where all the atoms of the system were allowed to relax. For this purpose we used the GRACE procedure in which part of the system is used to define the Hessian matrix while the rest is relaxed at each step of the stationary structures search. By use of this computational scheme, the hydrolysis of the acyl-enzyme is described as a three-step process: The first step corresponds to the proton transfer from the hydrolytic water molecule to the carboxylate group of Glu166 and the subsequent formation of a tetrahedral adduct as a consequence of the attack of this activated water molecule to the carbonyl carbon atom of the beta-lactam. In the second step, the acyl-enzyme bond is broken, obtaining a negatively charged Ser70. In the last step this residue is protonated by means of a direct proton transfer from Glu166. The large mobility of Glu166, a residue that is placed in a Ohms-loop, is essential to facilitate this mechanism. The geometry of the acyl-enzyme complex shows a large distance between Glu166 and Ser70 and thus, if protein coordinates were kept frozen during the reaction path, it would be difficult to get a direct proton transfer between these two residues. This computational study shows how a flexible treatment suggests the feasibility of a mechanism that could have been discounted on the basis of crystallographic positions.  相似文献   

7.
Quantum-chemical calculations of molecular complexes simulating the proton channel of influenza A virus and the proton-transfer system of the active site of carboanhydrase enzyme were performed. These complexes comprise a proton-donor and a proton-acceptor groups bridged by a chain of water molecules. Calculations of the methylimidazole (H+)-H2O-CH3COO? complex as a model of influenza M2 virus revealed free translation motion of the water molecule between the donor and acceptor, as well as concerted proton transfer in both H bonds. The barrier for proton transfer is independent of the position of the bridging water molecule and varies linearly with the difference in the electrostatic potentials between the donor and acceptor. With elongation of the H-bond bridge between the donor and acceptor groups, the H-bond lengths and proton shifts in the chain links vary periodically. This process can be defined as an H-bond deformation wave (proton wave). It was shown that motion of one proton along the H bond is associated with vibrational motion of protons in other links, which results in wave propagation along the chain. The calculation results allowed the rate of the proton wave and the time of proton transfer from the donor to acceptor to be estimated.  相似文献   

8.
Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilization of the chromophore's excited state by the guanidium group of Arg52, located just above the negatively charged chromophore ring. In vacuo isomerization does not occur. Isomerization of the double bond is enhanced relative to isomerization of a single bond due to the steric interactions between the phenyl ring of the chromophore and the side chains of Arg52 and Phe62. In the isomerized configuration (ground-state cis), a proton transfer from Glu46 to the chromophore is far more probable than in the initial configuration (ground-state trans). It is this proton transfer that initiates the conformational changes within the protein, which are believed to lead to signaling.  相似文献   

9.
The molecular modeling of structural forms of the green fluorescent protein (GFP) with the Ser65Thr single-site mutation was performed by the quantum mechanics/molecular mechanics (QM/MM) method. Two model systems were constructed based on the crystallographic structure from the Protein Data Bank (PDB entry code 1EMA.) The model systems differ in the initial protonation state of the side chain of the amino acid residue Glu222 near the chromophore. The atomic coordinates of the protein macromolecule corresponding to the equilibrium geometric configurations were determined by total energy minimization using the QM/MM method within the density functional theory approximation PBE0/cc-pVDZ for the quantum subsystem that consists of the chromophore, a water molecule, and the side chains of Arg96, Glu222, and Ser205, and with the parameters of the AMBER force field for the molecular mechanics subsystem. In the analysis of the results, particular attention was given to the hydrogen bond redistribution in the chromophore-containing region of the protein caused by a change in the protonation state of the chromophore. The results obtained from the model containing the initially protonated side chain of Glu222 suggest a new interpretation of the photophysical processes in the green fluorescent protein.  相似文献   

10.
Proton‐coupled electron transfer (PCET) was investigated in three covalent donor–bridge–acceptor molecules with different bridge lengths. Upon photoexcitation of their Ru(bpy)32+ (bpy=2,2′‐bipyridine) photosensitizer in acetonitrile, intramolecular long‐range electron transfer from a phenolic unit to Ru(bpy)32+ occurs in concert with release of the phenolic proton to pyrrolidine base. The kinetics of this bidirectional concerted proton–electron transfer (CPET) reaction were studied as a function of phenol–Ru(bpy)32+ distance by increasing the number of bridging p‐xylene units. A distance decay constant (β) of 0.67±0.23 Å?1 was determined. The distance dependence of the rates for CPET is thus not significantly steeper than that for ordinary (i.e., not proton coupled) electron transfer across the same bridges, despite the concerted motion of oppositely charged particles into different directions. Long‐range bidirectional CPET is an important reaction in many proteins and plays a key role in photosynthesis; our results are relevant in the context of photoinduced separation of protons and electrons as a means of light‐to‐chemical energy conversion. This is the first determination of β for a bidirectional CPET reaction.  相似文献   

11.
We present a detailed mechanism for the proton transfer from a protein‐bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time‐resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X‐ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.  相似文献   

12.
Cleavage/transesterification of phosphodiesters is catalyzed by various acidic groups in solution and with enzymes. General-acid catalysts can transfer protons to the developing phosphorane intermediate, resulting in a monoprotic-monoanionic intermediate, giving the so-called "triester mechanism". Using a proton inventory on a model compound (1) possessing an intramolecular hydrogen bond between a phosphodiester and a guanidinium group, we find that two protons move in the rate-determining step for cleavage/transesterification. In contrast, HPNP shows a single-proton inventory and is a substrate well accepted to react with the movement of only one proton at the transition state. We therefore propose a mechanism for 1 that involves general-acid catalysis by the guanidinium group. This leads one to conclude that other, more acidic groups, such as ammonium and imidazolium, would also act as general-acid catalysts.  相似文献   

13.
In this paper we report the results of extensive quantum chemical reaction pathway calculations for the electronic ground state of several different cluster models that mimic the proton chain transfer path within the green fluorescent protein (GFP). Our principal objective is to establish the robustness with respect to variations in the model of our recent mechanistic inferences for the ground state proton chain transfer [S. Wang and S. C. Smith, J. Phys. Chem. B, 2006, 110, 5084]. Additionally, comparison of our ground state results with the excited state proton transfer (ESPT) study by Vendrell et al. [O. Vendrell, R. Gelabert, M. Moreno and J. M. Lluch, J. Am. Chem. Soc., 2006, 128, 3564] leads to the conclusion that the mechanism of proton chain transfer may be expected to be analogous in ground and excited states, principally because in both cases the loss of the chromophore's phenolic proton contributes strongly to the reaction coordinate only late in the reaction path.  相似文献   

14.
The energetics of proton transfer in liquid water investigated by using ab initio calculation. The molecular electronic interaction of hydrated proton clusters in classified into many-body interaction elements by a new energy decomposition method. It is found that up to three-body molecular interaction is essential to describe the potential energy surface. The three-body effect mainly arises from the (non-classical) charge transfer and strongly depends on their configuration. Higher than three-body effects are small enough to be neglected. To simulate the liquid state reactions, two cluster models including all water molecules up to the second shell in the proton transfer reactions are employed. It is shown that these proton transfer reactions only involve small potential energy barriers of a few kcal/mol or less when structural rearrangement of the solvent is induced along the proton movement.  相似文献   

15.
Cytochrome c oxidase (CytcO), the final electron acceptor in the respiratory chain, catalyzes the reduction of O(2) to H(2)O while simultaneously pumping protons across the inner mitochondrial or bacterial membrane to maintain a transmembrane electrochemical gradient that drives, for example, ATP synthesis. In this work mutations that were predicted to alter proton translocation and enzyme activity in preliminary computational studies are characterized with extensive experimental and computational analysis. The mutations were introduced in the D pathway, one of two proton-uptake pathways, in CytcO from Rhodobacter sphaeroides . Serine residues 200 and 201, which are hydrogen-bonded to crystallographically resolved water molecules halfway up the D pathway, were replaced by more bulky hydrophobic residues (Ser200Ile, Ser200Val/Ser201Val, and Ser200Val/Ser201Tyr) to query the effects of changing the local structure on enzyme activity as well as proton uptake, release, and intermediate transitions. In addition, the effects of these mutations on internal proton transfer were investigated by blocking proton uptake at the pathway entrance (Asp132Asn replacement in addition to the above-mentioned mutations). Even though the overall activities of all mutant CytcO's were lowered, both the Ser200Ile and Ser200Val/Ser201Val variants maintained the ability to pump protons. The lowered activities were shown to be due to slowed oxidation kinetics during the P(R) → F and F → O transitions (P(R) is the "peroxy" intermediate formed at the catalytic site upon reaction of the four-electron-reduced CytcO with O(2), F is the oxoferryl intermediate, and O is the fully oxidized CytcO). Furthermore, the P(R) → F transition is shown to be essentially pH independent up to pH 12 (i.e., the apparent pK(a) of Glu286 is increased from 9.4 by at least 3 pK(a) units) in the Ser200Val/Ser201Val mutant. Explicit simulations of proton transport in the mutated enzymes revealed that the solvation dynamics can cause intriguing energetic consequences and hence provide mechanistic insights that would never be detected in static structures or simulations of the system with fixed protonation states (i.e., lacking explicit proton transport). The results are discussed in terms of the proton-pumping mechanism of CytcO.  相似文献   

16.
Molecular complexes are constructed to simulate proton transfer channels of the influenza A virus and of the active site of carbonic anhydrase. These complexes consist of proton donor and acceptor groups connected by a chain of water molecules. Quantum chemical calculations on the methylimidazole(H+)? H2O? CH3COO? model of the M2 virus channel indicate free translational motion of the water molecule between donor and acceptor, as well as concerted transfer of both H‐bond protons. The proton transfer barrier does not depend on the position of the bridged water molecule and varies linearly with the difference of electrostatic potentials between the donor and acceptor. When the water chain is elongated, and with various donor and acceptor models, periodicity appears in the H‐bond lengths and the progression of proton transfer in each link. This “wave” is shown to propagate along the chain, as it is driven by the displacement of a single proton. One can thereby estimate the velocity of the proton wave and proton conduction time. Computations are performed to examine the influence of immersing the system within a polarizable medium. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
Sun  Guotao  Fang  Hua 《Structural chemistry》2022,33(2):335-349
Structural Chemistry - A systematic study on the effect of extra hydrogen bonding (H-bonding) and water chain on ground-state multiple proton transfer (GSMPT) in 2-aminopyridine (2AP) complexes...  相似文献   

18.
The mechanism of the proton transfer and the concomitant molecular structural and hydrogen bond rearrangements after the photoisomerization of the chromophore in the photocycle of photoactive yellow protein are theoretically investigated by using the QM/MM method and molecular dynamics calculations. The free energy surface along this proton-transfer process is determined. This work suggests the important role of the water molecular migration into the moiety of chromophore, which facilitates proton transfer by the hydrogen bond rearrangement and the hydration of the pB' state.  相似文献   

19.
The deacylation step of serine protease catalysis is studied using DFT and ab initio QM/MM calculations combined with MD/umbrella sampling calculations. Free energies of the entire reaction are calculated in the gas phase, in a continuum solvent, and in the enzyme elastase. The calculations show that a concerted mechanism in the gas phase is replaced by a stepwise mechanism when solvent effects or an acetate ion are added to the reference system, with the tetrahedral intermediate being a shallow minimum on the free energy surface. In the enzyme, the tetrahedral intermediate is a relatively stable species ( approximately 7 kcal/mol lower in energy than the transition state), mainly due to the electrostatic effects of the oxyanion hole and Asp102. It is formed in the first step of the reaction, as a result of a proton transfer from the nucleophilic water to His57 and of an attack of the remaining hydroxyl on the ester carbonyl. This is the rate-determining step of the reaction, which requires approximately 22 kcal/mol for activation, approximately 5 kcal/mol less than the reference reaction in water. In the second stage of the reaction, only small energy barriers are detected to facilitate the proton transfer from His57 to Ser195 and the breakdown of the tetrahedral intermediate. Those are attributed mainly to a movement of Ser195 and to a rotation of the His57 side chain. During the rotation, the imidazolium ion is stabilized by a strong H-bond with Asp102, and the C(epsilon)(1)-H...O H-bond with Ser214 is replaced by one with Thr213, suggesting that a "ring-flip mechanism" is not necessary as a driving force for the reaction. The movements of His57 and Ser195 are highly correlated with rearrangements of the binding site, suggesting that product release may be implicated in the deacylation process.  相似文献   

20.
The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号