首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
马修臻  胡斌 《化学通报》2020,83(5):459-463
本文用高精度数字式振荡管密度计测定了288~323K范围内NaCl-KCl混合溶液的密度,溶液的离子强度范围从0.1到4mol·kg-1。用密度实验值计算了三元体系的超额体积并拟合得到了实验温度和浓度范围内的Pitzer模型参数,模型计算值与实验值的偏差在±0.0004g·cm-3以内。用Pitzer模型计算了不同离子强度下三元体系在298.15K下的混合体积。  相似文献   

2.
秦野  刘畅  刘建国  严川伟 《化学通报》2024,87(6):732-738
体积性质是锰基液流电池电解液的重要热力学性质,常用于解释溶液中复杂的离子间相互作用关系。本文在283.15-318.15 K温度范围内,测定了浓度为0.5-3.0 mol/kg的MnSO4水溶液的密度值,得到了MnSO4溶液的几个热力学参数和弱分子间的相互作用关系。结合Pitzer电解液表观摩尔体积热力学模型,得到了体积参数β(0)V MX,β(1)V MX和CV MX,而且计算值与实验值的相关系数能够达到0.988。这一研究可以更好地理解锰电解液中离子相互作用机制,为优化电解液成分和提高电池性能提供理论支撑。  相似文献   

3.
用Pitzer-Simonson-Clegg热力学模型(PSC模型),分别拟合KCl-H2O、K2SO4-H2O、KNO3-H2O体系以及KNO3-K2SO4-H2O和KNO3-KCl-H2O体系水活度和溶解度实验数据,得到二元参数和三元离子相互作用参数,并以此计算3个二元盐水体系溶解度相图,及2个三元盐水体系在不同温度下的溶解度,结果表明计算值与实验值一致。  相似文献   

4.
测定了298.15 K下, 无液接电池Li-ISE│Li2B4O7 (mA)(aq.), MgCl2(mB)(aq.)│AgCl/Ag的电动势, 利用测定结果计算了Li2B4O7-MgCl2-H2O体系离子强度在0.05~3 mol•kg-1范围内, 不同MgCl2离子强度分数的溶液中LiCl的平均活度系数, 并给出了其随离子强度I, B4O72-和Mg2+浓度的变化规律. 结合以往关于该体系和Li2B4O7-LiCl-H2O, Li2B4O7-H2O体系的等压研究结果, 用迭代和多元线性回归方法对Li-Mg2+-Cl-B4O72--H2O体系的离子相互作用模型进行了研究. 具体方法为考虑了该体系在不同的总硼浓度范围H3BO3, B(OH)4, B3O3(OH)4和B4O5(OH)42-四种含硼化合物的存在以及各硼化合物间的化学平衡, 以修正了的Pitzer渗透系数方程和活度系数方程为基础, 对该体系的等压法和电动势法研究结果进行最小二乘拟合, 拟合的标准偏差为0.0167, 用该模型计算的该体系的渗透系数、活度系数与实验值基本一致.  相似文献   

5.
张爱芸  姚燕 《化学学报》2006,64(6):501-507
测定了298.15 K下, 无液接电池Li-ISE│Li2B4O7 (mA)(aq.), MgCl2(mB)(aq.)│AgCl/Ag的电动势, 利用测定结果计算了Li2B4O7-MgCl2-H2O体系离子强度在0.05~3 mol•kg-1范围内, 不同MgCl2离子强度分数的溶液中LiCl的平均活度系数, 并给出了其随离子强度I, B4O72-和Mg2+浓度的变化规律. 结合以往关于该体系和Li2B4O7-LiCl-H2O, Li2B4O7-H2O体系的等压研究结果, 用迭代和多元线性回归方法对Li-Mg2+-Cl-B4O72--H2O体系的离子相互作用模型进行了研究. 具体方法为考虑了该体系在不同的总硼浓度范围H3BO3, B(OH)4, B3O3(OH)4和B4O5(OH)42-四种含硼化合物的存在以及各硼化合物间的化学平衡, 以修正了的Pitzer渗透系数方程和活度系数方程为基础, 对该体系的等压法和电动势法研究结果进行最小二乘拟合, 拟合的标准偏差为0.0167, 用该模型计算的该体系的渗透系数、活度系数与实验值基本一致.  相似文献   

6.
用等压法测定了在303.15 K时总碱质量摩尔浓度mNaOH(T)从0.61 mol/kg到5.72 mol/kg, 苛性比αK从1.98到7.04的NaOH-NaAl(OH)4-H2O溶液体系的等压平衡浓度和渗透系数, 并得到该溶液体系的水活度. 用Pitzer模型对实验结果进行了参数化研究, 拟合求得了离子相互作用参数. 用Pitzer模型计算的渗透系数值与实验结果一致. 用获得的参数计算了NaOH和NaAl(OH)4在NaOH-NaAl(OH)4-H2O溶液体系中的活度系数, 其值随总碱质量摩尔浓度的增加呈增加的趋势.  相似文献   

7.
在已有研究含硼体系的文献中仅考虑了硼酸根B4O7^-2或B(OH)4^-和H3BO3的存在,而对Li2B4O7-H2O体系具有多种硼物种聚合平衡体系的热力学性质的研究尚未见报道.本文用等压法研究了Li2B4O7-H2O体系于298.15K下浓度由稀到过饱和溶液的平衡气相蒸汽压及渗透系数.考虑了水溶液中多种硼物种的存在,以Pitzer方程为基础,建立了可描述该含硼体系的离子相互作用模型。  相似文献   

8.
Solubility in the Li2MoO4-(NH4)2MoO4-H2O system at 25°C was studied. A congruently saturating double molybdate crystal hydrate LiNH4MoO4 · H2O was found to form in the system. The density, refractive index, viscosity, surface tension, and specific electrical conductivity were measured for saturated aqueous solutions of the system. Molar volume, ionic strength, and equivalent conductivity isotherms were calculated. A correlation is observed between the variations of these properties of solutions and solubility in the system. The double salt was recovered and characterized by chemical analysis, IR spectroscopy, and dynamic and quasi-equilibrium thermogravimetry. A thermolysis scheme is suggested proceeding from the thermal curves and chemical analysis of intermediate phases.  相似文献   

9.
在298.15K,以葡萄糖质量分数(0.15)恒定的葡萄糖+水混合物为溶剂,测定了电池Pt,H2(101.325kPa)|HCl(m1),H2SO4(m2),Glucose(x),H2O(1-x)|AgCl-Ag的电动势.用所得数据确定了H2SO4在该混合溶剂中的二级解离常数(K2)和一级介质效应.用带有中性分子与各离子相互作用项的Pitzer方程表示Owen定义的总介质效应可较好地处理含有机物的多组分电解质水溶液体系,并用此法处理了文献中HCl在各混合溶剂中的活度系数实验数据,确定了HCl与有机物分子相互作用的Pitzer参数.  相似文献   

10.
用等压法研究了298.15 K下LiCl-Li2B4O7-H2O体系在不同LiB4O7质量摩尔浓度时的等压平衡浓度,  水活度; 计算了LiCl和Li2B4O7混合盐溶液的渗透系数等热力学性质. 用298.15 K下的实验数据对Pitzer离子相互作用模型进行了参数化研究, 拟合求取了298.15 K下Pitzer离子相互作用参数, 用获得的参数计算了LiCl和Li2B4O7在LiCl-Li2B4O7-H2O体系中的活度系数. Pitzer模型计算的渗透系数值与实验结果一致.  相似文献   

11.
IntroductionThe Zhabuye salt lake, Tibet in China, is famousfor the high concentrations of lithium, boron, andpotassium in the world. The main components areLi , K , Na , B4O72 -, CO32 -, Cl-, SO42 -, andH2O, including rare elements such as Rb and Cs .The…  相似文献   

12.
A complete, critical evaluation of all phase diagram and thermodynamic data was performed for all phases of the (Na2SO4 + K2SO4 + Na2S2O7 + K2S2O7) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions were assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na,K)2SO4 and (Na,K)2S2O7. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

13.
Li2O﹒2B2O3-H2O过饱和溶液20℃结晶动力学研究   总被引:3,自引:1,他引:3  
盐水溶液中存在过饱和现象,硼酸盐溶液的过饱和即是一例.其中,镁础酸盐体系过饱和溶液在不同浓度和温度条件下的液固相关系曾有多次报道[‘-’];给出过许多有益的结果,也探讨了镁硼酸盐的结晶反应机理并拟合出相应的结晶动力学方程.这些工作对认识盐水溶液过饱和现象有重要意义.为了更广泛地认识和了解不同棚酸盐水溶液中的过饱和现象,本文采用动力学方法,首先对Li20·2B203-HZO过饱和溶液结晶过程进行了研究.1实验初始反应溶液中Li。O/BZO。(摩尔比)为1/2,按此配比计算并称取需要量的Li0H·H。O(A.R.)、H。…  相似文献   

14.
15.
A comprehensive thermodynamic model based on the electrolyte NRTL (eNRTL) activity coefficient equation is developed for the NaCl + H2O binary, the Na2SO4 + H2O binary and the NaCl + Na2SO4 + H2O ternary. The NRTL binary parameters for pairs H2O-(Na+, Cl) and H2O-(Na+, SO42−), and the aqueous phase infinite dilution heat capacity parameters for ions Cl and SO42− are regressed from fitting experimental data on mean ionic activity coefficient, heat capacity, liquid enthalpy and dissolution enthalpy for the NaCl + H2O binary and the Na2SO4 + H2O binary with electrolyte concentrations up to saturation and temperature up to 473.15 K. The Gibbs energy of formation, enthalpy of formation and heat capacity parameters for solids NaCl(s), NaCl·2H2O(s), Na2SO4(s) and Na2SO4·10H2O(s) are obtained by fitting experimental data on solubilities of NaCl and Na2SO4 in water. The NRTL binary parameters for the (Na+, Cl)-(Na+, SO42−) pair are regressed from fitting experimental data on dissolution enthalpies and solubilities for the NaCl + Na2SO4 + H2O ternary.  相似文献   

16.
The objective of the present work is to represent the solid–liquid equilibrium of potassium sulfate in diverse water + organic solvent mixtures. This representation is carried out between 288.15 and 318.15 K in the following solvent mixtures: water + 1-propanol, water + methanol, water + ethanol and water + acetone. The experimental solubility data of the potassium sulfate in the diverse mixed solvents were obtained from literature, and the thermodynamic representation of the phase equilibrium is based on a simple methodology reported in the literature. Good agreements are observed between the results obtained in this work and the experimental solubility data of K2SO4 in the different solvent mixtures.Since these systems present a notable decrease in solubility owing to the effect of the cosolvent, making them potentially suitable for separating potassium sulfate by drowning-out the crystallization process, the amounts of salt precipitated, as a function of the weight percent of cosolvent, was calculated for the four systems analyzed. In addition, the optimum yield was estimated as function of the mass fraction of 1-propanol for the K2SO4 + water + 1-propanol system.  相似文献   

17.
The structures of Li2MO3 (M=Ir, Pt) can be derived from the well-known Li-ion battery cathode material, LiCoO2, through ordering of Li+ and M4+ ions in the layers that are exclusively occupied by cobalt in LiCoO2. The additional cation ordering lowers the symmetry from rhombohedral (R-3m) to monoclinic (C2/m). Unlike Li2RuO3 no evidence is found for a further distortion of the structure driven by formation of metal-metal bonds. Thermal analysis studies coupled with both ex-situ and in-situ X-ray diffraction measurements show that these compounds are stable up to temperatures approaching 1375 K in O2, N2, and air, but decompose at much lower temperatures in forming gas (5% H2:95% N2) due to reduction of the transition metal to its elemental form. Li2IrO3 undergoes a slightly more complicated decomposition in reducing atmospheres, which appears to involve loss of oxygen prior to collapse of the layered Li2IrO3 structure. Electrical measurements, UV-visible reflectance spectroscopy and electronic band structure calculations show that Li2IrO3 is metallic, while Li2PtO3 is a semiconductor, with a band gap of 2.3 eV.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号