首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H2), are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 approximately 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H2 treatment at low temperatures (100 approximately 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (>300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 approximately 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (>300 degrees C) is still higher than that directly pretreated with H2. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.  相似文献   

2.
Silver nanoparticles can be prepared by using a seed‐free photo‐assisted citrate reduction method under the irradiation of a sodium lamp. Under the same irradiation intensity, bath temperatures are crucial in influencing the reaction rate, morphologies of final products, and shape evolution of the silver nanostructures. For example, when the bath temperature is 80 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 38±6 %, 35±10 %, and 12±8 %, respectively. However, when the bath temperature is 30 °C, the product yields of silver nanoplates, nanorods, and nanodecahedra are 6±3 %, 0 %, and 83±16 %, respectively. Time‐dependent UV/Vis spectra and TEM images show that silver nanoplates were formed at the earlier reaction stage and greatly decreased in amount at the later stage when the bath temperatures are less than or equal to 40 °C. This indicates that the silver nanoplates, which can be regarded as intermediates, are kinetically favored products. They are not thermodynamically favored products at these relatively low bath temperatures. The SERS spectra of crystal violet (CV) show that all the silver colloids synthesized at various temperatures exhibit good enhancement factors and that the colloids prepared at lower bath temperatures have a higher enhancement factor.  相似文献   

3.
4.
Silver ion HPLC (Ag-HPLC), utilizing columns containing silver ions bonded to a silica substrate and acetonitrile in hexane as solvent, has proven to be a powerful technology for the analysis of geometric (cis or trans) or positional fatty acids, fatty acid ester (primarily methyl ester; FAME), or triacylglycerol (TAG) isomers. Previous studies had demonstrated that, unlike gas chromatography, samples eluted more rapidly at lower temperatures (at 20 degrees C versus 40 degrees C, for example). A low-temperature bath [dual-column Ag-HPLC; isocratic solvent systems of 0.3 to 0.7% acetonitrile (ACN) in hexane] was utilized to study the application of this system at low (below 0 degrees C) temperatures for analysis of FAME (zero to six double bonds) and TAG [SSS, OOO and LLL, where S=stearic acid (18:0), O=oleic acid (9c-18:1), and L=linoleic acid (9c, 12c-18:2)] standards. While FAME elution times continued to decrease from 0 degrees C to -10 degrees C, they began to increase at -20 degrees C. A similar situation was noted for the TAG isomers, except that retention times began to increase below 0 degrees C. The lower temperature limit of the Ag-HPLC/ACN in hexane system is thus ca. -25 degrees C. Increasing sample elution times and pump head pressures upon sample injection were noted at temperatures of -25 degrees C to -40 degrees C. Equilibration times at each temperature could be reduced to ca. 15 min without loss of resolution and with retention times of +/-2%. Temperature, rather than solvent composition, can therefore be utilized with the Ag-HPLC/ACN in hexane solvent system to optimize elution times and resolution(s) of FAME and TAG isomers.  相似文献   

5.
Silver nanoparticles (Ag NPs) stabilized by a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), have been synthesized by the reduction of silver ions with NaBH(4) in aqueous solutions. The obtained Ag NPs are very stable at room temperature due to the extended coil conformation of the PNIPAM chain at temperatures below its volume phase transition temperature ( approximately 32 degrees C). At higher temperatures (such as 45 degrees C) above the phase transition of PNIPAM, only minute aggregation between Ag NPs was observed, showing that the collapsed PNIPAM chains still retain the ability to stabilize Ag NPs. The PNIPAM-stabilized Ag NPs were then characterized as a function of the thermal phase transition of PNIPAM by UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and cyclic voltammeter. Consistent results were obtained showing that the phase transition of PNIPAM has some effect on the optical properties of Ag NPs. Switchable electrochemical response of the PNIPAM-stabilized Ag NPs triggered by temperature change was observed.  相似文献   

6.
Lee DS  Park SH  Yang H  Chung KH  Yoon TH  Kim SJ  Kim K  Kim YT 《Lab on a chip》2004,4(4):401-407
The current paper describes the design, fabrication, and testing of a micromachined submicroliter-volume polymerase chain reaction (PCR) chip with a fast thermal response and very low power consumption. The chip consists of a bulk-micromachined Si component and hot-embossed poly(methyl methacrylate)(PMMA) component. The Si component contains an integral microheater and temperature sensor on a thermally well-isolated membrane, while the PMMA component contains a submicroliter-volume PCR chamber, valves, and channels. The micro hot membrane under the submicroliter-volume chamber is a silicon oxide/silicon nitride/silicon oxide (O/N/O) diaphragm with a thickness of 1.9 microm, resulting in a very low thermal mass. In experiments, the proposed chip only required 45 mW to heat the reaction chamber to 92 degrees C, the denaturation temperature of DNA, plus the heating and cooling rates are about 80 degrees C s(-1) and 60 degrees C s(-1), respectively. We validated, from the fluorescence results from DNA stained with SYBR Green I, that the proposed chip amplified the DNA from vector clone, containing tumor suppressor gene BRCA 1 (127 base pairs at 11th exon), after 30 thermal cycles of 3 s, 5 s, and 5 s at 92 degrees C, 55 degrees C, and 72 degrees C, respectively, in a 200 nL-volume chamber. As for specificity of DNA products, owing to difficulty in analyzing the very small volume PCR results from the micro chip, we vicariously employed the larger volume PCR products after cycling with the same sustaining temperatures as with the micro chip but with much slower ramping rates (3.3 degrees C s(-1) when rising, 2.5 degrees C s(-1) when cooling) within circa 20 minutes on a commercial PCR machine and confirmed the specificity to BRCA 1 (127 base pairs) with agarose gel electrophoresis. Accordingly, the fabricated micro chip demonstrated a very low power consumption and rapid thermal response, both of which are crucial to the development of a fully integrated and battery-powered instrument for a lab-on-a-chip DNA analysis.  相似文献   

7.
The growing availability of genomic sequence information, together with improvements in analytical methodology, have enabled high throughput, high sensitivity protein identification. Silver staining remains the most sensitive method for visualization of proteins separated by two-dimensional gel electrophoresis (2-D PAGE). Several silver staining protocols have been developed which offer improved compatibility with subsequent mass spectrometric analysis. We describe a modified silver staining method that is available as a commercial kit (Silver Stain PlusOne; Amersham Pharmacia Biotech, Amersham, UK). The 2-D patterns abtained with this modified protocol are comparable to those from other silver staining methods. Omitting the sensitizing reagent allows higher loading without saturation, which facilitates protein identification and quantitation. We show that tryptic digests of proteins visualized by the modified stain afford excellent mass spectra by both matrix-assisted laser desorption/ionization and tandem electrospray ionization. We conclude that the modified silver staining protocol is highly compatible with subsequent mass spectrometric analysis.  相似文献   

8.
研究在高氯酸银作用下,三苯基环戊二烯扩环氧化生成三苯基取代吡喃盐的反应,并初步探讨了反应机理  相似文献   

9.
Modified silver staining for immobilized pH gradients.   总被引:2,自引:0,他引:2  
Silver development of gels containing an immobilized pH gradient has proved difficult so far because the bonded buffers (especially the tertiary amino acrylamido derivatives) tend to absorb silver ions with a resultant heavy background of increasing darkness from the anode to the cathode. We report a variant of silver staining in which thiosulfate is used twice: (i) prior to silver impregnation, at the millimolar level, to enhance sensitivity, and (ii) during development, at the micromolar level, to decrease the background.  相似文献   

10.
室温离子液体中银纳米微粒的制备与结构表征   总被引:21,自引:0,他引:21  
利用化学还原方法在室温离子液体1-甲基-3-丁基咪唑四氟硼酸盐中制备了金属银纳米微粒,采用X射线衍射,透射电子显微镜,傅立叶红外光谱和热分析对所制备的样品进行了结构表征.结果表明,所制备的银纳米微粒具有立方相结构,粒径约为20 nm.离子液体不但作为反应的溶剂而且作为修饰剂修饰在银纳米微粒的表面,从而有效地阻止了银纳米微粒的团聚.  相似文献   

11.
This paper describes the formation and characterization of liposome entrapping the silver nanoparticles in bilayer. Silver nanoparticles were entrapped in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposome, named as silver-loaded liposome. Specifically, above the gel to liquid-crystalline phase transition temperature of this lipid (i.e., 41 degrees C), it was observed that membrane fluidities of silver-loaded liposomes were increased, and fluorescence anisotropy values were reduced from 0.114 to 0.097. This might be due to the structural modifications and interactions between DPPC molecules and silver nanoparticles within the bilayer. It was also confirmed that silver nanoparticles were entrapped in hydrophobic region of lipid bilayer with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) measurements.  相似文献   

12.
The reaction of the asymmetric 3-aminomethylpyridine (3-amp) ligand with silver(I) tetrafluoroborate (AgBF4) produces an array of structural motifs that depend on the ratio of the reactants present and crystallization temperature. With a 1:1 ratio of 3-amp to silver, either a folded macrocycle, 1a, or a linear coordination polymer, 1, is formed, depending upon whether the crystals are grown at -35 or 5 degrees C. A 3:2 ratio forms two-dimensional sheets of 2 regardless of temperature of crystallization. The 2:1 ratio of ligand to metal again sees a temperature dependence with either a one-dimensional, 3a, or two-dimensional, 3, coordination polymer formed upon crystallization at low and high temperatures, respectively. Addition of 2,2'-bipyridine to any of the previous reaction mixtures stops the formation of their respective structures, instead constructing the discrete Ag-Ag-linked 4.  相似文献   

13.
A reaction of dithiocarbamic acid salts with carbonyl compounds was investigated for the first time in the presence of BF(3)·OEt(2). The reaction is temperature dependent and gives gem-bis(dithiocarbamates) at 35-45 °C as a molecule with high equivalents of dithiocarbamate groups. At lower temperatures (15-20 °C), the 2-iminium-1,3-dithietane is obtained as the only product. The structure of a 2-iminium-1,3-dithietane was accomplished by X-ray crystallographic analysis.  相似文献   

14.
L Zhao  C Liu  Y Sun  L Ban 《Electrophoresis》2012,33(14):2143-2144
Silver staining is widely used to detect protein in polyacrylamide gels when high sensitivity is required. A simple and rapid protocol for silver staining of proteins following PAGE was developed in the present study. The number of steps was reduced compared to conventional protocol by combining fixing, rinsing, and soaking into a single impregnating step, thus achieving detection of proteins in 20 min. The present method is as sensitive as current protocols with the advantage of saving time and costs.  相似文献   

15.
By adjusting column temperature and applied electric field, a fast separation in micellar electrokinetic capillary chromatography was developed for the separation of D-lysergic acid diethylamide derivatives. A baseline separation of nine derivatives was accomplished with a run time of less than 12 min by utilizing elevated column temperature (60 degrees C) and an applied electric field of 387 V/cm. The number of plates generated per unit time for the separations completed at elevated temperatures was significantly higher when compared to separations at the same applied electric field but at lower temperatures (20 degrees C).  相似文献   

16.
In this study the effects of melt temperature and flow rate of cooling gas on the characteristics of silver nanoparticles have been studied. Transmission electron microscopy and dynamic light scattering techniques have been employed to monitor morphology and particle size of the product. Measurements reveal that higher melt temperatures and higher cooling gas flow rates can decrease particle size. Silver nanoparticles with an average particle size of 35 nm and specific surface of 18.489 m2/g have been obtained at a melt temperature of 1,130 °C with argon flow rate of 20 liters per minute.  相似文献   

17.
The morphology and chemical composition of the surface of silver phosphate are studied. The qualitative and quantitative compositions of silver phosphate are quite the same as those of the surface of the phosphorus-promoted silver catalyst. Silver particles surrounded by silver phosphate form in the subsurface region upon treatment of the sample with hydrogen. As a result, a complex catalytic system is formed in which silver phosphate is both the precursor of the reactive component (metallic silver particles) and the stabilizing matrix for this component. The system obtained is stable toward high temperature and redox reaction media.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 161–166.Original Russian Text Copyright © 2005 by Knyazev, Magaev, Vodyankina, Titkov, Salanov, Koshcheev, Boronin.  相似文献   

18.
以钠基蒙脱石(Na-MMT)为载体,氧化银与氨水反应形成的银氨络合物[Ag(NH3)2OH]为前驱体,通过离子交换和三乙醇胺(TEA)还原两步法制备了载银蒙脱石(Ag-MMT)。 用佛尔哈德法测定了载银蒙脱石(Ag-MMT)的载银量,探讨了反应温度对MMT 载银量及其缓释性能的影响,并用FI-IR、XRD等技术手段对Na-MMT和Ag-MMT的结构进行了表征。 结果表明,在蒙脱石与Ag+的质量比为20:1、离子交换时间为1 h、反应温度50 ℃,然后再加入三乙醇胺和聚乙烯吡咯烷酮,50 ℃下反应2 h,MMT的载银量最大,银的利用率达到86.89%,释放时间最持久,并且MMT的层状结构没有被破坏。  相似文献   

19.
Silver nanoparticles stabilized by polystyrylmonocaboxylate ligands with varied chain lengths are synthesized via the low-temperature reduction of silver polystyrylmonocaboxylate with triethylamine. Silver nanoparticles have small dimensions, narrow size distributions, high stability, and ability to redisperse in nonpolar solvents. The kinetic features of the reaction are studied via high-performance liquid chromatography; UV, visible and IR spectroscopy; and transmission electron microscopy. It is shown that the reduction of silver occurs in the cores of reverse micelle species organized by diphilic macromolecules of silver polystyrylmonocarboxylates.  相似文献   

20.
Christian MM  Kenis PJ 《Lab on a chip》2006,6(10):1328-1337
The steam reforming of hydrocarbon fuels is a promising method for the production of hydrogen for portable electrical power sources. A suitable reactor for this application, however, must be compatible with temperatures above 800 degrees C to avoid coking of the catalytic structures during the reforming process. Here, ceramic microreactors comprising high surface area, tailored macroporous SiC porous monoliths coated with ruthenium (Ru) catalyst and integrated within high-density alumina reactor housings were used for the steam reforming of propane into hydrogen at temperatures between 800 and 1000 degrees C. We characterized these microreactors by studying C3H8 conversion, H2 selectivity, and product stream composition as a function of the total inlet flow rate, steam-to-carbon ratio (S/C), and temperature. As much as 18.2 sccm H2, or 3.3 x 104 sccm H2 per cm3 of monolith volume, was obtained from a 3.5 sccm entering stream of C3H8 at a S/C of 1.095 and temperatures greater than 900 degrees C. Operating at a S/C close to 1 reduces the energy required to heat excess steam to the reaction temperature and improves the overall thermal efficiency of the fuel processor. Kinetic analysis using a power law model showed reaction orders of 0.50 and -0.23 with respect to propane and steam, respectively, indicating that the rate limiting step in the steam reforming reaction is the dissociative adsorption of propane on the Ru catalyst. The performance of the microreactor was not affected after exposure to more than 15 thermal cycles at temperatures as high as 1000 degrees C, and no catalyst deactivation was observed after more than 120 h of continuous operation at 800 degrees C, making these ceramic microreactors promising for efficient on-site hydrogen production from hydrocarbons for use in polymer electrolyte membrane (PEM) fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号