首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the past 60 years, the standard model for the interpretation of the mechanism for proton transfer has been based upon transition‐state theory, which posits that the transition state is found in the proton transfer coordinate involving the breaking and making of bonds. However, the observed dynamics of proton transfer within the triplet contact radical ion pair, derived from a variety of substituted benzophenones complexed with N,N‐dimethylaniline, cannot be accounted for within the standard model for proton transfer. Instead, the kinetic behavior is in accord with nonadiabatic proton transfer theory that has the transition state in the solvent coordinate. Evidence for the importance of the solvent coordinate comes from the existence of an inverted region; as the driving force for reaction increases, the rate of proton transfer decreases. This kinetic behavior is not found in the standard model. The present paper employs density function theory to examine the question as to whether the inverted region can be attributed to the transition state being in the solvent coordinate or whether the inverted region is an artifact produced by changes in the structure of the triplet contact radical ion pair with the placement of substituents upon the p,p′ positions of benzophenone. It is concluded that the inverted region is not an artifact of substituent effects upon structure. These results support the conclusion that the transition state for proton transfer resides in the solvent coordinate and challenges the validity of the standard model for interpreting the mechanism of proton transfer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Proton conductivity phenomena in 10% Y-doped barium and strontium cerate are investigated experimentally and by quantum molecular dynamics simulations. In particular the impact of deviations from the cubic perovskite structure on the formation and mobility of protonic charge carriers is investigated. For Y: SrCeO3, which shows a larger deviation from the ideal cubic perovskite structure, the concentration and mobility of protonic defects is significantly lower than for Y: BaCeO3. The first is due to the decay of the oxygen position into two sites, only one of which is involved in the formation of protonic defects. The symmetry reduction also leads to the formation of different one-dimensional proton diffusion paths, and unfavourable jumps between such paths are supposed to control the macroscopic proton diffusion coefficient in Y: SrCeO3. The analysis suggests the formation of strong but transient hydrogen bonds and inter-octa-hedra proton transfer between vertices for SrCeO3 in contrast to just intra-octahedra proton transfer for BaCeO3. Whereas for BaCeO3 the proton transfer step is identified to be rate-limiting at T= 1000 K, for SrCeO3 both proton transfer and reorientation are found to be of similar magnitude.  相似文献   

3.
The fluorescence properties of the phospholipid derivative,N-[1-(2-naphthol)]-phosphatidylethanolamine (NAPH-PE), have been studied by steady-state and time-resolved fluorescence techniques. The new probe is a naphthol adduct of phosphatidylethanolamine. The emission spectrum of the fluorescent phospholipid depends on the pH and on the proton acceptor concentration as expected for a typical two-state excited-state proton transfer reaction. In ethanol solutions at an apparent pH of 6.7 and in the presence of acetate anion (0.14M), a biexponential decay is obtained from global analysis of the data. The lifetimes, 1=3.9 ns and 2=6.2 ns. are constant across the spectral region 350–460 nm. The decay-associated spectra and the species-associated spectra reproduce well the profiles reported for a two-state excited-state proton transfer reaction. The fluorescent phospholipid has been incorporated into dimyristoyllecithin and dipalmitoyllecithin vesicles. Although lower proton transfer is found, the reaction appears to be dependent on the gel-to-liquid-crystalline phase transition of the lipid membrane. In addition, the steady-state anisotropy of NAPH-PE measured as a function of temperature trace the phase transition of the two vesicle systems. Thus, it is shown that the physical state of the bilayer affects a reaction which takes place at the membrane surface. In the presence of acetate ions (0.3M), global analysis, performed in terms of fluorescence decay parameters, recovers preexponential coefficients that are consistent with an excited-state proton transfer reaction. The short lifetime drops from 3.9 to 0.44 ns without significant changes of the longer-lifetime component.  相似文献   

4.
Muon transfer from proton to deuteron was examined with muonic X-rays. The parameter q 1s was determined directly and the time spectra of the X-rays were analyzed for effects of the muon transfer reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In the current work, density functional theory calculations were performed to elucidate the detailed reaction mechanism for N‐heterocyclic carbene (NHC)‐catalyzed oxidative N‐acylation reaction of amides with aldehydes affording imide products. According to the calculated results, the reaction is initiated by the nucleophilic attack of NHC to aldehydes forming zwitterionic intermediate, which can then form Breslow intermediate via proton transfer. The Breslow intermediate can then be oxidized affording the oxidative intermediate, which can then go through 1,2‐addition with the deprotonated N‐sulfonylcarboxamides. Subsequently, elimination of NHC catalyst produces the final imide product. Our results reveal that the proton in N‐sulfonylcarboxamides is probably abstracted by base t‐BuOK or DPQH, and the deprotonation process is barrier‐less. Moreover, for the second step, ie, the formation of Breslow intermediate, direct proton transfer is impossible to occur. On the contrary, the results reveal that t‐BuOH can mediate the proton transfer in this step and significantly lower the energy barrier to 24.1 kcal/mol, which is also the highest energy barrier for the whole reaction. The work provides not only valuable clues for elucidating the detailed reaction mechanism for the invaluable NHC‐catalyzed oxidative reactions but also mechanistic insights for the rational design of novel NHC‐catalyzed oxidative reactions in the future.  相似文献   

6.
The dual fluorescence spectra of 3-hydroxyflavone molecules excited by electromagnetic radiation in the region of the S 1 and S 2 absorption bands in the temperature region of 20–80°C are studied using the dynamic quenching of the excited state. An analysis of the fluorescence parameters shows that heating the solution from room temperature to 60°C increases the proton transfer rate by a factor of 1.24 in the case of standard excitation into the main absorption band and even stronger (by a factor of 6.9) in the case of excitation into the second absorption band. The presence of a quencher reduces the yield of the two emission bands and noticeably increases the proton transfer rate, by a factor of 1.16 at room temperature and by a factor of 1.25 at 80°C. Upon excitation into the second singlet band, the transfer rate increases even more (especially at higher temperatures), by a factors of 1.24 and 3.5 for the same temperatures. The temperature dependences of the transfer rate constant allowed us to estimate the activation energies of the proton transfer reaction under different physical conditions and reach conclusions about the mechanism by which this reaction proceeds. It is found that the proton transfer activation energy decreases from 500 to 360 cm−1 when measured in temperature ranges of 20–40 and 20–60°C. The introduction of a quencher with a concentration of 5 × 10−3 M increases the activation barrier to 534 and 471 cm−1 in the same temperature ranges.  相似文献   

7.
The ratio of the squares of the electric and magnetic proton form factors is shown to be proportional to the ratio of the cross sections for the elastic scattering of an unpolarized electron on a partially polarized proton with and without proton spin flip. The initial proton at rest should be polarized along the direction of the motion of the final proton. Similar results are valid for both radiative ep scattering and the photoproduction of pairs on a proton in the Bethe-Heitler kinematics. When the initial proton is fully polarized in the direction of the motion of the final proton, the cross section for the epep process, as well as for the epepγ and γp → $ e\bar ep $ e\bar ep processes, without (with) proton spin flip is expressed only in terms of the square of the electric (magnetic) proton form factor. Such an experiment on the measurement of the cross sections without and with proton spin flip would make it possible to acquire new independent data on the behavior of G E 2(Q 2) and G M 2(Q 2), which are necessary for resolving the contradictions appearing after the experiment of the JLab collaboration on the measurement of the proton form factors with the method of polarization transfer from the initial electron to the final proton.  相似文献   

8.
Higher singlet states can play an important role in various intramolecular processes. Recent investigations of the time-resolved (with a picosecond resolution) spectra of the dual fluorescence of 3-hydroxyflavone molecules excited in the region of the S 1 and S 2 absorption bands by pulses with a duration of ∼44 ps have directly shown the occurrence of the proton transfer from the carboxyl to the carbonyl group of the molecule upon excitation into the second singlet absorption band. The reaction times estimated from the emission characteristics are comparable with the electronic level lifetime (several picoseconds), as a result of which the direct measurements are rather difficult. The proton transfer through the S 2 state is also recorded in the steady-state fluorescence excitation spectra. In this study, it is shown how the reaction rate can be estimated from these data.  相似文献   

9.
We investigate corrections to the handbag approach for wide-angle Compton scattering off protons at moderately large momentum transfer: the photon–parton subprocess is calculated to next-to-leading order in and contributions from the generalized parton distribution E are taken into account. Photon and proton helicity flip amplitudes are non-zero due to these corrections, which leads to a wealth of polarization phenomena in Compton scattering. Thus, for instance, the incoming photon asymmetry or the transverse polarization of the proton is non-zero, although small. Received: 31 October 2001 / Revised version: 11 December 2001 / Published online: 8 February 2002  相似文献   

10.
The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared between 150 and 30 000 GeV and with Bjorken x between 0.0032 and 0.65 are measured in collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of . The evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function is determined. An extraction of the u and d quark distributions at high x is presented. At high electroweak effects of the heavy bosons and are observed and found to be consistent with Standard Model expectation. Received: 27 August 1999 / Published online: 25 February 2000  相似文献   

11.
A mechanistic dichotomy of one‐step versus stepwise pathways in hydride and hydrogen transfer reactions of NADH analogues is discussed including the relation between two pathways: a continuous change versus a discontinuous change of the mechanism. Examples of stepwise electron–proton–electron transfer through a charge transfer (CT) complex in hydride transfer from NADH analogues to hydride acceptors are presented including the detection and the reactivity of the intermediate, that is, radical cations of NADH analogues. The relation between stepwise versus one‐step mechanisms of hydride and hydrogen transfer reaction of NADH analogues is also clarified by showing examples of the change of the mechanism including the borderline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data.  相似文献   

13.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

14.
The intermolecular hydrogen bonds in phenol–trimethylamine complexes were investigated by Bader Atom in Molecules (AIM) theory. The AIM parameters of the bond critical points (BCPs) of the O···H, N···H, and CO bonds as well as those of the phenol ring critical point (RCP) were analyzed as functions of the proton‐transfer degree. Transfer of the proton from donor to acceptor changes not only the electron density of the hydrogen bridge, but also the electron cloud in the proton donor. The differences between the proton donors in relation to their pKa values are seen in the systematic changes of the AIM parameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Summary The double-minimum potential generated by the proton motion involved in the two hydrogen bonds of the adenine-thymine base pair can be accounted for through the orbital-energy spectrum. The results show that the greatest interaction between the molecular orbitals is found when the interprotonic distance of the protons is optimum,i.e. at the top of the barrier of the double-minimum potential. This raises the question of charge transfer electronic transitions as a possibility of modelling the behaviour of the double proton transfer in the excited states of this base pair. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

16.
Transfer reactions 56Fe(12C, xN) have been investigated. Angular distributions of particles following elastic scattering, one neutron and one proton transfer reaction channels leading to low lying states in respective residual nuclei have been measured. These are analysed using the coupled reaction channel (CRC) formalism. Starting with a double folded real potential, the elastic scattering angular distribution is calculated using the computer code FRESCO. Inclusion of couplings to first excited states in both the target and the projectile already tends to describe the experimental elastic scattering distribution. Additional coupling of one neutron transfer reaction to first five excited states in 55Fe and one proton transfer reaction to first three low lying states in 57Co improves fit to the elastic scattering angular distribution. Further refinement in fit is brought about by addition of a weak imaginary potential to the complex potential calculated by ERESCO to simulate the absorption effects due to those channels whose coupling is not included explicitly. Such a potential describes the experimental angular distributions for elastic, one neutron and one proton transfer channels correctly in shape and magnitude without any arbitrary normalisation.  相似文献   

17.
The effect of microhydration on the simplest dicarboxylic acid, namely oxalic acid, leading to the dissociation of its proton, is studied using first principle-based electronic structure calculations. The geometry of the hydrated clusters of oxalic acid considering up to seven water molecules is determined at ωB97X-D/aug-cc-pVDZ level of theory. Solvent stabilisation and interaction energy parameters are calculated applying CCSD(T) level of theory. The calculated free energy of formation shows that the hydrated oxalic acid clusters are stable only at low temperature and pressure. Though the solvent stabilisation energy increases linearly with an increase in the size of the hydrated cluster, the calculated interaction energy, acidic O–H bond dipole moment and hydrogen bond energy show characteristic features of ion pair formation. The spectral manifestation of the weakening hydroxyl bond is observed as red shift in its stretching frequency. A rigid potential energy scan, altering the dissociating O–H bond length of the oxalic acid molecule, shows an energy barrier for acid to water proton transfer in all cases except hepta-hydrate of oxalic acid, where a barrier-less proton transfer occurs. The number of water molecules (n) needed for dissociation of oxalic acid molecule is consistent with the value obtained from recently reported emperical correlation between n and pKa.  相似文献   

18.
The role of water’s H-bond percolation network in acid-assisted proton transfer was studied in water and glycerol solutions and in sugar glasses. Proton transfer rates were determined by the fluorescence of pyrene-1-carboxylate, a compound with a higher pK in its excited state relative to the ground state. Excitation of pyrene-1-COO produces fluorescence from pyrene-1-COOH when a proton is accepted during the excited singlet state lifetime of pyrene-1-COO. The presence of glycerol as an aqueous cosolvent decreases proton transfer rates from phosphoric and acetic acid in a manner that does not follow the Stokes relationship on viscosity. In sugar glass composed of trehalose and sucrose, proton transfer occurs when phosphate is incorporated in the glass. Sugar glass containing phosphate retains water and it is suggested that proton transfer requires this water. The infrared (IR) frequency of water bending mode in sugar glass and in aqueous solution is affected by the presence of phosphate and the IR spectral bands of all phosphate species in water are temperature dependent; both results are consistent with H-bonding between water and phosphate. The fluorescence results, which studied the effect of cosolvent, highlight the role of water in assisting proton transfer in reactions involving biological acids, and the IR results, which give spectroscopic evidence for H-bonding between water and phosphate, are consistent with a mechanism of proton transfer involving H-bonding. The possibility that the phosphate-rich surface of membranes assists in proton equilibration in cells is discussed.  相似文献   

19.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

20.
A review of studies on the ortho Mannich bases containing various substituents in the phenyl ring on the basis of1H,13C and15N nuclear magnetic resonance (NMR) spectra in various solvents over the temperature range 110–298 K is presented. Some new results are also included. The data gathered so far show that there is some critical (inversion) range of ΔpK a (= pK a(NH+) − pK a(OH)) in which the proton transfer equilibrium appears. This inversion range is well reflected in the behaviour of secondary deuterium isotope effect in13C NMR spectra. A strong temperature effect on the strength of hydrogen bonding should be emphasized. The1H chemical shift for trichloroderivative increases from 13.5 at room temperature up to 17 ppm at 130 K when the proton is equally shared between the bridging atoms (1 J(1H,15N) = 30–40 Hz). The potential for the proton motion in such bridges is discussed taking into account the behaviour in the ultraviolet and infrared spectra. The role of dimerization in proton transfer equilibria is shown. In addition the rotation of OH groups involved in hydrogen bond formation and nitrogen pyramidal inversion was studied by the1H dynamical NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号