首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents experimental studies of the deposition of silicone oil drops onto two different solid surfaces in an aqueous solution. A series of deposition tests were conducted to measure the dimensionless mass transfer rate (Sherwood number). The effects of three kinds of aqueous solutions and two solid surfaces on the deposition process were studied and compared with the numerical predictions based on the well-known DLVO theory. More specifically, both the experimentally measured and the numerically predicted Sherwood numbers monotonically decrease as the pH value of the aqueous solution increases. It was also found that two ionic surfactant solutions have similar influences while the electrolyte solutions have opposite effects on the deposition rate on different solid surfaces. Finally, comparison of all the experimental results for the bare glass surface with the numerical simulations shows that the deposition process of the silicone oil drops onto the hydrophilic solid surface can be satisfactorily described by the classical DLVO theory. However, the deposition data for the FC725 precoated surface are significantly larger than the numerical predictions. This fact suggests that the so-called non-DLVO attractive interaction is involved in the deposition process with the hydrophobic solid surface. This additional non-DLVO attractive interaction, which is generally called the hydrophobic interaction, still remains to be incorporated into the existing DLVO theory, if this is possible.  相似文献   

2.
Deposition to glass of Streptococcus salivarius HB-C12 and Staphylococcus epidermidis 3399 in a parallel plate flow chamber in the absence and presence of an externally applied electric field has been studied experimentally. No effect on bacterial adhesion, including initial deposition rates, numbers of adhering bacteria after 4 h, spatial distributions of adhering bacteria and air bubble induced detachment, was found. A theoretical analysis shows that electric fields applied over a 150 μm thin glass substratum do not have a sufficiently strong effect on its surface potential to influence bacterial adhesion.  相似文献   

3.
Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 microm in diameter) have been used as colloidal probes. From the streaming potential measurements we determined the zeta-potential of the gold surface, while from the force measurements the diffuse double-layer potential psi(d) was obtained by fitting the data to the DLVO theory or to the nonlinear Poisson-Boltzmann equation. Measured interactions were found to be entirely due to overlap of electric double layers with no indication of attractive Van der Waals forces. Results of both types of measurements are in good agreement. The double layer potential strongly depends on the pH, probably as a result of the presence of oxide species on the gold surface. Insight in the double layer potential of polarizable interfaces such as the gold/electrolyte solution interface is the first step for understanding the effect of externally applied potentials on the adsorption behavior of charged species.  相似文献   

4.
We studied electric double-layer (EDL) interactions in electrolytes with different valence combinations. Our results show that the interactions are similar for electrolytes with the same co-ion valences and concentrations and such similarity increases with the co-ion valence and surface potential. A scaled surface potential was defined and found to be useful in characterizing the difference in EDL interaction. These results show that co-ions play a more important role than counterions in determining EDL potential and interaction in an electrolyte solution, especially for systems with high co-ion valence and/or high surface potentials.  相似文献   

5.
This study presents the dielectrophoretic (DEP) assembly of multi‐walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT‐coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti‐mouse IgG surfaces.  相似文献   

6.
We report a method for the directed electrodeposition of polymer films in various patterns using spatially controllable electric field gradients. One- and two- dimensional surface electric field gradients were produced by applying different potential values at spatially distinct locations on an electrode surface. Variations in the resulting local electrochemical potentials were used to spatially manipulate the rate of electrodeposition of several polymers. By controlling the electric field gradient in the presence of sequentially varying deposition solutions, complex polymer patterns could be produced. One-dimensional structures consisting of alternating bands of polyaniline and either poly(phenylene) oxide or poly(aminophenylene) oxide were produced, as well as more complex two-dimensional structures. Film characterization was achieved through optical imaging, UV-vis spectroscopy, and ellipsometry. Results indicate that this directed deposition technique is a simple strategy to create complex, millimeter-sized surface patterns of electrodeposited materials.  相似文献   

7.
Sanchez PL  Elliott JM 《The Analyst》2005,130(5):715-720
Using the technique of liquid crystal templating a series of high surface area mesoporous platinum microelectrodes was fabricated. The underpotential deposition of metal ions at such electrodes was found to be similar to that at conventional platinum electrodes. The phenomena of underpotential deposition, in combination with the intrinsic properties of mesoporous microelectrodes (i.e. a high surface area and efficient mass transport) was exploited for the purpose of anodic stripping voltammetry. In particular the underpotential deposition of Ag(+), Pb(2+) and Cu(2+) ions was investigated and it was found that mesoporous microelectrodes were able to quantify the concentration of ions in solution down to the ppb range. The overall behaviour of the mesoporous electrodes was found to be superior to that of conventional microelectrodes and the effects of interference by surfactants were minimal.  相似文献   

8.
Thin films of different polymers - poly(styrene) (PS), poly(methylmethacrylate) (PMMA), poly(vinylcarbazole) (PVCz), poly(vinylchloride) (PVC) and poly(vinylidene fluoride) (PVDF) - were deposited by spin-coating or by vapor deposition. On these polymers, thin films of (hexadecafluorophthalocyaninato)-oxovanadium (F16PcVO) were prepared by physical vapor deposition. The growth of these films was monitored in situ by optical spectroscopy. The optical absorbance spectra were analyzed based on the coupling of transition dipoles to obtain information on the intermolecular arrangement of chromophores in the films. In all of these samples, the molecules are oriented with their molecular plane preferentially perpendicular to the substrate surface. This gives the desired overlap of the π-systems for electric conductance parallel to the substrate. Differences in the interactions were detected when deposition temperatures below or above the glass transition temperature of a given polymer were compared. The morphology of the polymer films and the deposited semiconductors were investigated by atomic force microscopy and scanning electron microscopy. The influence of the chosen substrate on the film structure is determined. The optical and electric properties of the films could thereby be influenced and the applicability of such films as active layers in organic thin film transistors is discussed.  相似文献   

9.
Melanin is an important class of biological pigments because of its distinct chemical and physical properties. The electrochemical deposition of natural melanin thin films was studied using two different techniques; constant potential and cyclic voltammetry along with a deposition time of five hours. The thin films deposited electrochemically on a fluorine-doped tin oxide conductive glass substrate using the constant potential method, exhibited faster growth rate and better adhesion to the fluorine-doped tin oxide working electrodes than those deposited using the cyclic voltammetry method. The thin films deposited on the fluorine-doped tin oxide conductor glass using the constant potential method were also more homogeneous than those deposited via the cyclic voltammetry technique. The increase of film thickness is related to the increase of electrochemical deposition time. Interestingly, the electrochemical deposition using the constant potential method had the advantage of consuming less electric charge. The physical and chemical structures of the melanin thin films were characterized using ultraviolet–visible absorption spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analysis. The ultraviolet–visible absorption spectra showed the correlation between the variation of deposition rates of melanin and the type of electrochemical technique employed as well as the thickness of the film. The average thickness of the film is 500 nm which absorb 40% of light in both type of films. The atomic force microscopy images illustrated the homogeneous deposition of the melanin molecules on the fluorine-doped tin oxide conductive glass substrate, indicating that the thickness of the thin films can be controlled. We estimated an average grain size of 14.093 Å. The ease of preparing such thin films of organic materials can open new avenues towards the use of soft conductors, in contrast to the complex preparation of industrial semiconductors.  相似文献   

10.
《Electrophoresis》2017,38(9-10):1301-1309
Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye–Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential −73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant.  相似文献   

11.
Adhesive interactions between yeasts and bacteria are important in the maintenance of infectious mixed biofilms on natural and biomaterial surfaces in the human body. In this study, the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) approach has been applied to explain adhesive interactions between C. albicans ATCC 10261 and S. gordonii NCTC 7869 adhering on glass. Contact angles with different liquids and the zeta potentials of both the yeasts and bacteria were determined and their adhesive interactions were measured in a parallel-plate flow chamber.Streptococci were first allowed to adhere to the bottom glass plate of the flow chamber to different seeding densities, and subsequently deposition of yeasts was monitored with an image analysis system, yielding the degree of initial surface aggregation of the adhering yeasts and their spatial arrangement in a stationary end point. Irrespective of growth temperature, the yeast cells appeared uncharged in TNMC buffer, but yeasts grown at 37 degrees C were intrinsically more hydrophilic and had an increased electron-donating character than cells grown at 30 degrees C. All yeasts showed surface aggregation due to attractive Lifshitz-van der Waals forces. In addition, acid-base interactions between yeasts, yeasts and the glass substratum, and yeasts and the streptococci were attractive for yeasts grown at 30 degrees C, but yeasts grown at 37 degrees C only had favorable acid-base interactions with the bacteria, explaining the positive relationship between the surface coverage of the glass by streptococci and the surface aggregation of the yeasts. Copyright 1999 Academic Press.  相似文献   

12.
The attachment of emulsion drops to glass substrates is investigated in relation to the redeposition of oil drops in the process of washing. It turns out that the drops of a surfactant-stabilized oil-in-water emulsion cannot be attached to an immersed glass plate simply by the buoyancy force. However, the same drops can be deposited on the plate when the latter is pulled out of the emulsion, i.e., when the drops are pressed against the substrate by a receding meniscus. We measured the amount of the oily deposit as a function of the pH, ionic strength, and composition of an amphoteric-anionic surfactant mixture. The enhanced oil deposition at low pH correlates with the domain in which the emulsion drops and the solid substrate bear opposite electric charges. This was established by zeta-potential measurements with oil drops and glass particles. The anionic surfactant brings negative surface charge to the oil droplets and suppresses the oil deposition on the negatively charged glass. With the increase of the fraction of the amphoteric surfactant in the mixture, the zeta-potential is converted from negative to positive, and the oil deposition grows almost linearly with the potential. In general, the deposition of oil drops by a receding meniscus is governed by an interplay of electrostatic and hydrodynamic factors. Copyright 2000 Academic Press.  相似文献   

13.
The immobilization of acetylcholinesterase on platinum microelectrodes modified with p-nitrobenzenediazonium is optimized. In the first step, a layer of p-nitrophenyl groups was deposited on the surface and then reduced to p-aminophenyl groups. Finally, the enzyme was linked to the amino groups on the surface using glutaraldehyde. Each step of the electrode modification was characterized by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) at acidic and neutral pH to modify the electric charges of different bound moieties. The deposition of diazonium groups was attempted by potentiometry, amperometry or CV, but only potentiometry proceeded without passivation of the surface. The use of microelectrodes improved the limit of detection of ethylparaoxon measurements to 20 nM (compared to 100 nM in case of screen-printed electrodes based on the same method of immobilization). The method allowed the production of stable and reproducible amperometric microbiosensors and may be adapted to other enzymes and electrode materials.  相似文献   

14.
We designed a novel model potential that unifies the pair interactions including the well known Morse and Lennard-Jones potentials. Using two parameters, the interactions at the minimum, short range, and long range of the new model potential can be controlled separately, so the potential is very flexible to fit various systems. It is found that for potentials with similar range with the Lennard-Jones potential at the minimum, due to the difference at the short and long ranges, the favorite structures can be very different, and some previously unknown magic numbers are located.  相似文献   

15.
A highly accurate aniostropic intermolecular potential for diatomic hydrogen has been developed that is transferable for molecular modeling in heterogeneous systems. The potential surface is designed to be efficacious in modeling mixed sorbates in metal-organic materials that include sorption interactions with charged interfaces and open metal sites. The potential parameters are compatible for mixed simulations but still maintain high accuracy while deriving dispersion parameters from a proven polarizability model. The potential includes essential physical interactions including: short-range repulsions, dispersion, and permanent and induced electrostatics. Many-body polarization is introduced via a point-atomic polarizability model that is also extended to account for many-body van der Waals interactions in a consistent fashion. Permanent electrostatics are incorporated using point partial charges on atomic sites. However, contrary to expectation, the best potentials are obtained by permitting the charges to take on values that do not reproduce the first non-vanishing moment of the electrostatic potential surface, i.e., the quadrupole moment. Potential parameters are fit to match ab initio energies for a representative range of dimer geometries. The resulting potential is shown to be highly effective by comparing to electronic structure calculations for a thermal distribution of trimer geometries, and by reproducing experimental bulk pressure-density isotherms. The surface is shown to be superior to other similarly portable potential choices even in tests on homogeneous systems without strong polarizing fields. The present streamlined approach to developing such potentials allows for a simple adaptation to other molecules amenable to investigation by high-level electronic structure methods.  相似文献   

16.
This paper considers the electrophoretic motion of a spherical particle in an aqueous electrolyte solution in a T-shaped rectangular microchannel, where the size of the channel is close to that of the particle. This is a complicated transient process where the electric field, the flow field, and the particle motion are coupled together. A theoretical model was developed to investigate the influences of the applied electric potentials, the zeta potentials of the channel and the particle, and the size of the particle on the particle motion. A direct numerical simulation method using the finite element method is employed. This method employs a generalized Galerkin finite element formulation that incorporates both equations of the fluid flow and equations of the particle motion into a single variational equation where the hydrodynamic interactions are eliminated. The ALE method is used to track the surface of the particle at each time step. The numerical results show that the electric field in the T-shaped microchannel is influenced by the presence of the particle, and that the particle motion is influenced by the applied electric potentials and the zeta potentials of the channel and the particle. The path of the particle motion is dominated by the local electric field and the ratio of the zeta potential of the channel to that of the particle. The particle's velocity is also dependent on its size in a small channel.  相似文献   

17.
Carbon fibre microelectrodes were made by sealing the fibres into glass and by using heat-shrinkable tubing. The electrodes can be coated with mercury by deposition at ?0.9 V vs. SCE from 0.1 M thiocyanate containing 0.05 mM mercury(II) at pH 2.5. Coulometric measurements and square-wave voltammetry were used to establish the properties of the deposit. Conditions for the deposition and stripping of cadmium are outlined.  相似文献   

18.
Cheran LE  Chacko M  Zhang M  Thompson M 《The Analyst》2004,129(2):161-168
Surface-immobilized protein species deposited in the microarray format have been detected by time-of-flight secondary ion mass spectrometry and by scanning Kelvin nanoprobe. The former method was used to examine the nature of protein deposition on amine-coated glass slides and gold substrates in preparation for Kelvin measurements. Both gallium and SF(5)(+) ion sources were employed to produce positive and negative ion spectra of amino acids and polypeptides. Scanning Kelvin technology has been used to detect antibody-antigen interactions in a label-free protocol through measurement of the surface potential of the biochemical pair on indium tin oxide, amine-treated slides and gold substrates. The results show that good inter-spot reproducibility can be achieved and that deposited areas can be examined for homogeneity at 100 nm resolution. This work represents the first report on surface potential detection in protein microarray technology.  相似文献   

19.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.  相似文献   

20.
An experimental investigation of the electrokinetic streaming potentials of both fully and partially retentive nanopores as compared with the filtration progress of dilute globular protein solution under different surface charge conditions was performed using hollow fibers. The streaming potential is generated by the electrokinetic flow effect within the electric double layer of the charged surface. Depending on the solution pH, both the protein and the pore wall can be either repulsive or attractive due to the long-range electrostatic interaction. The repulsive electrostatic interaction allows the protein particles to stay in a suspended state above the outer surface of hollow fibers instead of being deposited. The apparent streaming potential value at partially retentive pores is larger than that at fully retentive pores for the oppositely charged case; however, the opposite behavior is shown for the same-charged case. The axial-position-dependent streaming potential was also observed in order to explore the development of a concentration polarization layer during the cross-flow filtration. The time evolution of the streaming potential during the filtration of protein particles is related to the filtrate flux, from which it can be found to provide useful real-time information on particle deposition onto the outer surfaces of hollow fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号