首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methods of X-ray diffraction analysis, scanning electron microscopy, synchronous thermal analysis, and adsorption are used to study the mechanochemical synthesis of silicon carbide through the reaction Si + C → β-SiC. The reaction is found to take place in several stages. At the first stage, i.e., at activation doses below approximately 5 kJ/g, the powders of the components are independently ground to increase the specific surface area of the mixture to 145 m2/g, graphite is amorphized, and the sizes of the coherent-scattering regions of silicon drastically diminish. At the second stage (doses of 5–15 kJ/g), dense Si/C aggregates are formed and two fractions (coarse and fine) with different particle sizes arise in silicon crystallites. As the activation dose is enhanced, the amount of the fine fraction rises, while the sizes of coherent-scattering regions decrease to 2–3 nm. When samples are heated at 800°C, the fine fraction of silicon interacts with carbon to yield silicon carbide with crystallite sizes of 3–4 nm, whereas the coarse fraction of silicon recrystallizes. At the third stage, i.e., at doses of higher than 15 kJ/g, the mechanochemical synthesis of SiC occurs through the following scheme: fine fraction Si + C → amorphous SiC → crystallization of SiC.  相似文献   

2.
A new class of reactions of molecular oxygen O2 + ZH3I → O2ZH3 + I (Z = C, Si) proceeding by the mechanism of “inversion substitution” was investigated by quantum chemistry methods and the transition state theory (TST). The profiles of the potential energy surfaces (PES) along the reaction coordinate and the characteristics of transition states were calculated using the DFT approach with the B3LYP hybrid functional and the DZVP basis set. The characteristics of the transition states were then used for TST calculations of the rate constants for the direct and reverse “inversion substitution” reactions and their temperature dependences in the temperature interval 273–2000 K. The activation barriers to the substitution reactions under study were found to be substantially lower than the barriers to the abstraction reactions O2 + ZH3I → ZH2I + HO2 (by 16.3 kcal mol−1 for Z = C and by 7.2 kcal mol−1 for Z = Si). The results obtained show that the “inversion substitution” reactions dominate over the abstraction reactions in the interaction of molecular oxygen with carbon- and silicon-centered iodides as well as (probably) many other substrates. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1803–1807, September, 2008.  相似文献   

3.
A parabolic model of bimolecular radical reactions was used for analysis of the hydrogen transfer reactions of ketyl radicals: >C·OH+R1COR2→>C=O+R1R2C·OH. The parameters describing the reactivity of the reagents were calculated from the experimental data. The parameters that characterize the reactions of ketyl and alkyl radicals as hydrogen donors with olefins and with carbonyl compounds were obtained: >C·OH+R1CH=CH2→>C=O+R1C·HCH3; >R1CH=CH2+R2C·HCH2R3→R2C·HCH3+R2CH=CHR3. These parameters were used to calculate the activation energies of these transformations. The kinetic parameters of reactions of hydrogen abstraction by free radicals and molecules (adelhydes, ketones, and quinones) from the C−H and O−H bonds were compared. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2178–2184, November, 1998.  相似文献   

4.
According to the IR spectroscopy data, the molecules of (O→Si)-(acetoxymethyl)trifluorosilane having in the liquid state and in polar media the intramolecular bond C=O→Si, exist in the gas phase in the temperature range 438–538 K in the equilibrium with the molecules with tetracoordinate silicon atom. This allowed to determine experimentally the enthalpy of formation of the intramolecular bond C=O→Si for the gas phase to be ΔH = 2.2±0.1 kcal mol−1. In the solid state at 110 K and in the CS2 solution, along with molecule with the C=O→Si bond, the dimers exist, which include both tetra- and pentacoordinate silicon atom. The data of quantum-chemical calculations (B3LYP/6-311G**) show that the shortest intermolecular bond Si-F→Si is realized in the associate formed by the molecules in the ap,sp- and sp,sp-forms, and the longest one, when both components are in the sp,sp-forms.  相似文献   

5.
According to the data of X-ray diffraction analysis and quantum chemical calculations, in the hypervalent silicon compounds where the coordination cycle is closed by the C=O→Si-F fragment, the O→Si interatomic distance is governed by the orientation of the silicon atom determined by the C=O→Si angle. This is an indication of a directivity of the coordination bond O→Si; a regular variation in the nature of the latter is reflected in the observed dependence of the O→Si distance on the C=O→Si angle.  相似文献   

6.
In order to identify the kinetic process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction, two approaches, linear-fitting approach developed from Semenov"s theory of spontaneous ignition and variation of Friedman method, were carried out with cylindrical Ti-75 at% Al samples. Following these approaches, two identical activation energies are obtained as 169±15 kJ mol-1 and 170±5 kJ mol-1, respectively. Compared with the activation energies of reactions and interdiffusions between Ti and Al, the possible rate-controlling process of self-heating in DSC experiment for Ti+3Al→TiAl3 reaction is the interdiffusion between Ti and Al through TiAl3-layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Diphenyl[2-(trifluorosilyl)ethyl]phosphine oxide was synthesized by the reaction of diphenyl[2-(triethoxysilyl)ethyl]phosphine oxide with boron trifluoride etherate. As shown by the 1H, 13C, 19F, 31P, 29Si multinuclear NMR spectroscopy data, the silicon atom in the molecule is tetracoordinate. The absence of P=O→Si interaction in diphenyl[2-(trifluorosilyl)ethyl]phosphine oxide, as follows from the comparison of the calculated [GIAO B3LYP/6-311++G(2d,p)] and experimental δ(29Si) and δ(31P) values, is due to the formation of complex with BF3 by the phosphoryl oxygen.  相似文献   

8.
Theoretical studies on the thermodynamic and kinetic properties of the reactions of scandium (I) ion with the sulfur-transfer reagent SCO via the C-O bond activation pathway have been carried out over the temperature range of 200-1200 K using the DFT/B3LYP method, general statistical thermodynamics, and Eyring transition state theory with Wigner correction. The relevant reactions include reaction 1 1Sc+ + SCO → 1IM11TS11IM2 (Step 1) → 1TS21IM31ScO+ + 1CS (Step 2), and reaction 2 3Sc+ + SCO → 3IM1 → CP → 1IM21TS21IM31ScO+ +1CS in which the spin multiplicity changes from the triplet state to the singlet state in the crossing region. It was concluded that the order of the equilibrium constants (K) and the reaction rate constants (k) are consistent with that of their corresponding exoergic energies, ΔE, and reaction barriers, respectively. Step 2 of reaction 1 is both thermodynamically and kinetically favored over the whole temperature range. Moreover, both Reaction 1 and reaction 2 are exothermic and spontaneous processes in which their entropy increases, and the magnitudes of their thermodynamic values all decrease with increasing temperature.   相似文献   

9.
Experimental data on acyl radical decomposition reactions (RC·O → R· + CO, where R = alkyl or aryl) are analyzed in terms of the intersecting parabolas method. Kinetic parameters characterizing these reactions are calculated. The transition state of methyl radical addition to CO at the C atoms is calculated using the DFT method. A semiempirical algorithm is constructed for calculating the transition state geometry for the decomposition of acyl radicals and for the reverse reactions of R· addition to CO. Kinetic parameters (activation energy and rate constant) and geometry (interatomic distances in the transition state) are calculated for 18 decomposition reactions of structurally different acyl radicals. A linear correlation between the interatomic distance r #(C…C) (or r #(C…O)) in the transition state the enthalpy of the reaction (δH e) is established for acyl decomposition reactions (at br e = const). A comparative analysis of the enthalpies, activation energies, and interatomic distances in the transition state is carried out for the decomposition and formation of acyl, carboxyl, and formyl radicals.  相似文献   

10.
New mono-and bis-chelate hypercoordinate silicon complexes containing the monoanionic C,O-chelating 2,2-dimethyl-2,3-dihydrobenzo-1,3-oxazin-3-ylmethyl (BonCH2) ligand were synthesized starting from 2,2-dimethyl-2,3-dihydrobenzo-1,3-oxazin-4-one (1) through its TMS derivative 2. The reactions of compound 2 with the chlorosilylmethylating agents ClCH2SiMe2Cl, ClCH2SiMeCl2, and (ClCH2)2SiCl2 followed by the transformations of the initially formed chlorosilanes BonCH2SiMe2Cl (3), BonCH2SiMeCl2 (6), and [(BonCH2)2Si(Cl)]+Cl (8), respectively, into the target products afforded neutral monochelates, viz., monofluoride BonCH2SiMe2F (5) and difluoride BonCH2SiMeF2 (7), and the bis-chelate disiloxane cation-anion complexes {[(BonCH2)2Si]2O}2+·Cl·ClHCl (9) and {[(BonCH2)2Si]2O}2+·2TfO (10). The reaction of ditriflate 10 with boron trifluoride etherate produced fluoride triflate (BonCH2)2Si(F)OTf (11). The X-ray diffraction study of compounds 5, 7, 9, 10, and 11, as well as of NH-heterocycle 1 and disiloxane (BonCH2SiMe2)2O (4) studied earlier, demonstrated that the Si atoms in complexes 5, 7, 9, and 10 are pentacoordinate through the formation of an intramolecular O→Si bond. The coordination of silicon in fluoride triflate 11 can be described as 5+1. In disiloxane 4, one of two Si atoms is pentacoordinate. Dinuclear cation-anion complexes 9 and 10 contain the diastereomeric bis-silylium ions {[(BonCH2)2Si]2O}2+, which differ in the configuration of the chiral bis-chelate fragments (BonCH2)2Si. In complex 9, these fragments have opposite configurations (ΛΔ); in ditriflate 10, the same configurations (ΛΛ). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 446–458, March, 2007.  相似文献   

11.
Three identity nucleophilic substitution reactions at tetracoordinated silicon atom with inversion and retention pathways: Nu + SiH3Cl → Nu + SiH3Cl[Nu = (1)Cl, (2) LiCl, and (3) (LiCl)2], are investigated using the G2M(+) theory. Our results show that changing the nucleophile can shift the mechanism (favorable pathway), stepwise from a single-well PES for reaction 1, via a double-well PES for reaction 2, to a triple-well PES for reaction 3, indicating the importance of steric and electronic effects on the SN2@Si. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Interatomic distances in the reaction centers of the addition reactions of (i) H· to the C=C, C=O, N≡C, and C≡C bonds, (ii) ·CH3 radical to the C=C, C=O, and C≡C bonds, and (iii) alkyl, aminyl, and alkoxyl radicals to olefin C=C bonds were determined using a new semiempirical method for calculating transition-state geometries of radical reactions. For all reactions of the type X· + Y=Z → X— Y—Z· the r # X...Y distance in the transition state is a linear function of the enthalpy of reaction. Parameters of this dependence were determined for seventeen classes of radical addition reactions. The bond elongation, Δr # X...Y, in the transition state decreases as the triplet repulsion, electronegativity difference between the atoms X and Y in the reaction center, and the force constant of the attacked multiple bond increase. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 894–902, April, 2005.  相似文献   

13.
Heavy ion activation has been studied as a method for determining hydrogen. The reactions used [e.g.1H(7Li, n)7Be] are the “inverse” of well known reactions [e.g.7Li(p, n)7Be]. Nuclear activation parameters for the ion beams of interest (7Li2+,10B2+) have been studied. The analytical feasibility is demonstrated with the determination of hydrogen in titanium at the 100 and 30 ppm levels with relative precisions of 8 to 10%. Detection limits in titanium are in the 0.1 to 0.5 ppm range. Heavy ion bombardment is also accompanied by the emission of characteristic X-rays (“atomic” activation). The parameters governing X-ray emission and background production have been investigated. Experimental K and L X-ray yields from thick targets have been measured for many elements excited by On+ beams of 0.5 to 7 MeV/amu and Kr7+ beams of 0.5 to 1 MeV/amu. The simultaneous determination of trace elements at levels of 10 to several 100 ppm in microsamples (∼10−5 g) is demonstrated on biological specimens. K and L X-ray yields and corresponding detection limits have also been measured with the7Li2+ and10B2+ beams used for the nuclear activation of hydrogen. With these beams (∼6 MeV/amu) simultaneous nuclear and atomic activation is possible, yielding an unusual multielement trace analysis capability covering hydrogen and medium and high Z elements.  相似文献   

14.
The reaction of metaborate esters (RO)3B3O3 [R = Me, Et, ClCH2CH2–, Cl3CCH2–, ClCH2CH2CH2–, (ClCH2)2CH–] with Si(OR)4 (R = Me, Et), either neat or in dry propan-2-one or dry THF at room temperature, led to gels which when dried and heated in air for 20 mins at 600°C afforded borosilicate glasses in high ceramic yields. The dried gels and glasses were characterized by elemental analysis, TGA, IR, and powder XRD, and solid-state MAS 29Si and 11B NMR. The gelling reaction was investigated by solution 11B and 29Si NMR. These NMR studies indicated B–O–Si reaction intermediates and a mechanism involving alkoxy exchange and various condensation/elimination reactions of the borosilicate esters have been proposed.  相似文献   

15.
The multiple-channel reactions OH + SiH(CH3)3 → products (R1) and the single-channel reaction OH + Si(CH3)4 → Si(CH3)3CH2 + H2O (R2) have been studied by means of the direct dynamics method at the BMC-CCSD//MP2/6-311+G(2d,2p) level. The optimized geometries, frequencies and minimum energy path are all obtained at the MP2/6-311+G(2d,2p) levels, and energy information is further refined by the BMC-CCSD (single-point) level. The rate constants for every reaction channels are calculated by canonical variational transition states theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range 200–2,000 K. The theoretical total rate constants are in good agreement with the available experimental data, and the three-parameter expression k 1 = 2.53×10−21 T 3.14 exp(1, 352.86/T), k 2 = 6.00 × 10−19 T 2.54 exp(−106.11/T) (in unit of cm3 molecule−1 s−1) over the temperature range 200–2,000 K are given. Our calculations indicate that at the low temperature range, for reaction R1, H-abstraction is favored for the SiH group, while the abstraction from the CH3 group is a minor channel. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The recoil energies of up to several MeV developed during nuclear reactions involving particle emission lead to the radionuclides used in the analysis being redistributed between adjacent materials. In aluminum irradiated by reactor neutrons,24Na losses were observed up to a depth of 8·10−6 m; in the adjacent silicon, a24Na penetration depth was observed up to 4·10−6 m. Similar results were obtained from reaction products deriving from irradiation of Ti, Ni, N, S and Cl. This means that the results of activation analysis investigations performed for the purpose of evaluating this type of reaction might contain significant errors if thin layers, boundary zones of very small sample volumes are examined. In the analysis of surface layers on silicon devices, completely erroneous results have been obtained in some cases due to the recoil phenomena described.  相似文献   

17.
Implanted 74Ge and 120Sn concentrations in silicon (Si) layers were investigated by particle induced X-ray emission (PIXE), instrumental neutron activation analysis (INAA), Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS). Slight differences were observed in the results obtained. It was shown that PIXE and INAA are as powerful as the traditional RBS and SIMS spectroscopy for the investigation of thin layered Si.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
In an effort to design agents that could solubilize silica in water, under ambient conditions and pH, as takes place in nature, novel zwitterionic, penta-oxo-coordinated silicon compounds with siliconate cores have been prepared from 4-substituted pyridine N-oxides (H, OMe, morpholino, NO2) as donor ligands, their structures established by1H,13C and MS, and the coordination number of silicon, by29Si NMR. The formation of complexes from pyridine N-oxides is noteworthy since they arise from interaction with a weakly nucleophilic oxygen centre. The ability of the pyridine N-oxides to enhance the solubilization of silica in water has been experimentally demonstrated. Possible rationalization of this observation on the basis of O → Si coordination via the oxygen atom of pyridine N-oxide is suggested Dedicated to Professor S Swaminathan on the occasion of his 80th birthday  相似文献   

19.
X-ray diffraction is used to determine the crystal and molecular structure of spirocyclic (C=O→Si←O′=C′) bis(2-methyl-4-pyrone-3-oxy)difluoro(λ6)siliconium containing a hypervalent silicon atom and the previously unknown F2SiO4 coordination center. The coordination polyhedron of the silicon atom is a slightly distorted octahedron.  相似文献   

20.
The aim of this study is to investigate the influence of some monovalent counter-ions (NH4 +, K+ and Cs+) on thermal behavior of polyoxometalates derived from H3PMo12O40 (HPM) and H4PVMo11O40 (HPVM) by replacing the protons. The IR and UV-VIS-DRS spectra of some acid and neutral NH4 +, K+, Cs+ salts, which derived from HPM and HPVM, confirmed the preservation of Keggin units (KU) structure. The X-ray diffraction spectra clearly showed the presence of a cubic structure. The non-isothermal decomposition of studied polyoxometalates proceeds by a series of processes: the loss of crystallization water; the loss of O2 accompanying with a reduction of V5+→V4+ and Mo6+→Mo5+; the loss of constitution water started at 360°C for HPVM salts and 420°C for HPM salts; the decomposition of ammonium ion over 420°C with NH3, N2 and H2O elimination and simultaneous processes of reduction (V5+→ V4+ and Mo6+→ Mo5+ or Mo4+) associating with endothermic effects; reoxidation of Mo5+, Mo4+ and V4+with a strong exothermic effect; destruction of KU to the oxides: P2O5, MoO3 and V2O5 and the crystallization of MoO3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号