首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the area of the Block-Intersection problem for Steiner Quadruple Systems (see [4, 5]), we prove that q16?37 = 103 and q16?29 = 111 ?J (16), and that qv?h?J(v) for h = 21, 25, v = 2n and n?4.  相似文献   

2.
A resolution of the lines of AG(n,q) is a partition of the lines classes (called resolution classes) such that every point of the geometry is on exactly one line of each resolution class. Two resolutions R,R' of AG(n,q) are orthogonal if any resolution class from R has at most one line in common with any class from R'. In this paper, we construct orthogonal resolutions on AG(n,q) for all n=2i+1, i=1,2,…, and all q>2 a prime power. The method involves constructing AG(n,q) from a finite projective plane of order qn-1 and using the structure of the plane to display the orthogonal resolutions.  相似文献   

3.
After the change of variables Δi = γi ? δi and xi,i + 1 = δi ? δi + 1 we show that the invariant polynomials μG(n)q(, Δi, ; , xi,i+1,) characterizing U(n) tensor operators 〈p, q,…, q, 0,…, 0〉 become an integral linear combination of Schur functions Sλ(γ ? δ) in the symbol γ ? δ, where γ ? δ denotes the difference of the two sets of variables {γ1 ,…, γn} and {δ1 ,…, δn}. We obtain a similar result for the yet more general bisymmetric polynomials mμG(n)q(γ1 ,…, γn; δ1 ,…, δm). Making use of properties of skew Schur functions Sλρ and Sλ(γ ? δ) we put together an umbral calculus for mμG(n)q(γ; δ). That is, working entirely with polynomials, we uniquely determine mμG(n)q(γ; δ) from mμG(n)q ? 1(γ; δ) and combinatorial rules involving Ferrers diagrams (i.e., partitions), provided that n ≥ (μ + 1)q. (This restriction does not interfere with writing the general case of mμG(n)q(γ; δ) as a linear combination of Sλ(γ ? δ).) As an application we deduce “conjugation” symmetry for nμG(n)q(γ; δ) from “transposition” symmetry by showing that these two symmetries are equivalent.  相似文献   

4.
Let R be a real closed field and n?2. We prove that: (1) for every finite subset F of Rn, the semialgebraic set Rn?F is a polynomial image of Rn; and (2) for any independent linear forms l1,…,lr of Rn, the semialgebraic set {l1>0,…,lr>0}⊂Rn is a polynomial image of Rn.  相似文献   

5.
Let S be a projective plane, and let G?Aut(S) and PSL(2, q) ? G ? PΓL(2, q) with q > 3. If G acts point-transitively on S, then q = 7 and S is of order 2.  相似文献   

6.
It is proved that for an [FC]? group G, the Beurling algebra Lω1(G) is 1-regular if and only if ω is non-quasianalytic. As an application the Wiener property is deduced. Further for a σ-compact [FD]? group G, points in Prim1Lω1(G) are shown to be spectral provided that ω satisfies Shilov's conditions.  相似文献   

7.
We introduce the concept of a strict l-metric projector, based in the definition of strict approximation, to prove that for each matrix A of order m×n with coefficients in the field R of real numbers there exists a set of operators G: RmRn homogeneous and continuous, but not necessarily linear (strict generalized inverse) such that AGA = A and 6AGy?y6 is minimized for all y, when the norm is the l norm. We investigate the properties of these operators and prove that there are two distinguished operators A-1∞, β and A-1 which are extensions of the generalized inverse introduced by Newman and Odell in the case of a strictly convex norm.  相似文献   

8.
A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ?n 2/4? and that the extremal graphs are the complete bipartite graphs K ?n/2?,?n/2?. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a tower of 2’s of height about 1014. The conjecture has yet to be proven for other values of n. Let Δ denote the maximum degree of G. We prove the following maximum degree theorems for diameter-2-critical graphs. If Δ ≥ 0.7 n, then the Murty-Simon Conjecture is true. If n ≥ 2000 and Δ ≥ 0.6789 n, then the Murty-Simon Conjecture is true.  相似文献   

9.
A group G is knot-like if it is finitely presented of deficiency 1 and has abelianization G/G?Z. We prove the conjecture of E. Rapaport Strasser that if a knot-like group G has a finitely generated commutator subgroup G then G should be free in the special case when the commutator G is residually finite. It is a corollary of a much more general result : if G is a discrete group of geometric dimension n with a finite K(G,1)-complex Y of dimension n, Y has Euler characteristics 0, N is a normal residually finite subgroup of G, N is of homological type FPn-1 and G/N?Z then N is of homological type FPn and hence G/N has finite virtual cohomological dimension vcd(G/N)=cd(G)-cd(N). In particular either N has finite index in G or cd(N)?cd(G)-1.Furthermore we show a pro-p version of the above result with the weaker assumption that G/N is a pro-p group of finite rank. Consequently a pro-p version of Rapaport's conjecture holds.  相似文献   

10.
In this paper it has been proved that if q is an odd prime, q?7 (mod 8), n is an odd integer ?5, n is not a multiple of 3 and (h,n)=1, where h is the class number of the filed Q(√−q), then the diophantine equation x2+q2k+1=yn has exactly two families of solutions (q,n,k,x,y).  相似文献   

11.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

12.
We study the weight distribution of irreducible cyclic (n, k) codeswith block lengths n = n1((q1 ? 1)/N), where N|q ? 1, gcd(n1,N) = 1, and gcd(l,N) = 1. We present the weight enumerator polynomial, A(z), when k = n1l, k = (n1 ? 1)l, and k = 2l. We also show how to find A(z) in general by studying the generator matrix of an (n1, m) linear code, V1d over GF(qd) where d = gcd (ordn1(q), l). Specifically we study A(z) when V1d is a maximum distance separable code, a maximal shiftregister code, and a semiprimitive code. We tabulate some numbers Aμ which completely determine the weight distributionof any irreducible cyclic (n1(21 ? 1), k) code over GF(2) for all n1 ? 17.  相似文献   

13.
Suppose G is a locally compact noncompact group. For abelian such G's, it is shown in this paper that L1(G), C(G), and L(G) always have discontinuous translation-invariant linear forms(TILF's) while C0(G) and Lp(G) for 1 < p < ∞ have such forms if and only if GH is a torsion group for some open σ-compact subgroup H of G. For σ-compact amenable G's, all the above spaces have discontinuous left TILF's.  相似文献   

14.
This paper studies the relation between the connectivity and other parameters of a digraph (or graph), namely its order n, minimum degree δ, maximum degree Δ, diameter D, and a new parameter lpi;, 0 ≤ π ≤ δ ? 2, related with the number of short paths (in the case of graphs l0 = ?(g ? 1)/2? where g stands for the girth). For instance, let G = (V,A) be a digraph on n vertices with maximum degree Δ and diameter D, so that nn(Δ, D) = 1 + Δ + Δ 2 + … + ΔD (Moore bound). As the main results it is shown that, if κ and λ denote respectively the connectivity and arc-connectivity of G, . Analogous results hold for graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
IfG is a finite group, we define its prime graph Г(G), as follows: its vertices are the primes dividing the order ofG and two verticesp, q are joined by an edge, if there is an element inG of orderpq. We denote the set of all the connected components of the graph Г(G) by T(G)=i(G), fori = 1,2, …,t(G)}, where t(G) is the number of connected components of Г(G). We also denote by π(n) the set of all primes dividingn, wheren is a natural number. Then ¦G¦ can be expressed as a product of m1, m2, …, mt(G), where mi’s are positive integers with π(mi) = πi. Thesem i s are called the order components ofG. LetOC(G) := {m 1,m 2, …,m t (G)} be the set of order components ofG. In this paper we prove that, if G is a finite group andOC(G) =OC(M), where M is a finite simple group witht(M) ≥ 2, thenG is neither Frobenius nor 2-Frobenius.  相似文献   

16.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

17.
A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1 vertices such that their intersection of neighborhoods ofu, v forms a complete graphK q , and adding a new vertexx, new edgesxu, xv, xv 1,xv 2, …,xv q- 4, where {v 1,v 2,...,v q?4} ?-K q . In this paper we prove that a graphG with minimum degree not equal toq -3 and chromatic polynomialP(G;λ) = λ(λ - 1) … (λ -q +2)(λ -q +1)3(λ -q) n- q- 2 withn ≥ q + 2 has and only has 2-degree integral subgraph of q-tree withn vertices and added-vertex q-tree withn vertices.  相似文献   

18.
It is shown that for every value of an integer k, k?11, there exist 3-valent 3-connected planar graphs having just two types of faces, pentagons and k-gons, and which are non- Hamiltonian. Moreover, there exist ?=?(k) > 0, for these values of k, and sequences (Gn)n=1 of the said graphs for which V(Gn)→∞ and the size of a largest circuit of Gn is at most (1??)V(Gn); similar result for the size of a largest path in such graphs is established for all k, k?11, except possibly for k = 14, 17, 22 and k = 5m+ 5 for all m?2.  相似文献   

19.
We present here a proof that a certain rational function Cn(q,t) which has come to be known as the “q,t-Catalan” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. The precise form of the conjecture is given in Garsia and Haiman (J. Algebraic Combin. 5(3) (1996) 191), where it is further conjectured that Cn(q,t) is the Hilbert series of the diagonal harmonic alternants in the variables (x1,x2,…,xn;y1,y2,…,yn). Since Cn(q,t) evaluates to the Catalan number at t=q=1, it has also been an open problem to find a pair of statistics a(π),b(π) on Dyck paths π in the n×n square yielding Cn(q,t)=∑πta(π)qb(π). Our proof is based on a recursion for Cn(q,t) suggested by a pair of statistics a(π),b(π) recently proposed by Haglund. Thus, one of the byproducts of our developments is a proof of the validity of Haglund's conjecture. It should also be noted that our arguments rely and expand on the plethystic machinery developed in Bergeron et al. (Methods and Applications of Analysis, Vol. VII(3), 1999, p. 363).  相似文献   

20.
The complete graph Kn, is said to have a G-decomposition if it is the union of edge disjoint subgraphs each isomorphic to G. The set of values of n for which Kn has a G-decomposition is determined if G has four vertices or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号