首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular and electronic structure of hypothetical complexes of unsubstituted fullerene C60 withI h symmetry and its cyclopentadienyl type derivatives were simulated by the MNDO/PM3 method taking the C60(XC[) n molecules (n=1, 2, 10, 12; X=Si, Ge, Sn) and η5-C60H5XCp (X=Ge, Sn), respectively, as example. The complexes 12η5-πC60(XCp)12 and η5-πC60XCp withI h andC 5v symmetry, respectively, were found to be the most stable compounds. The energies of the X−C60 bonds in these complexes are close to those of X−Cp bonds in bis(cyclopentadienyl) complexes XCp2 and are substantially higher than the energies of similar bonds in complexes of unsubstituted fullerene η1-πC60(XCp) and η5-πC60(XCp)+. Geometric parameters and spin densities in radicals C60XCp and biradicals C60(XCp)2 and C60H10 were calculated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2155–2165, November, 1998.  相似文献   

2.
The reaction of [PtMe3(bpy)(Me2CO)](BF4) (2) (prepared from [PtMe3I(bpy)] (1) plus Ag(BF4)) with MeSSMe resulted in the formation of [PtMe3(bpy)(MeSSMe-κS)](BF4) (3). A single-crystal X-ray diffraction analysis revealed in the octahedral Pt(IV) complex (configuration index: OC-6-33), a conformation of the monodentately κS bound MeSSMe ligand (C–S–S–C 92.7(4)°) being very close to that in non-coordinated MeSSMe, thus allowing some hyperconjugative interaction stabilizing the S–S bond. The reaction of [K(18C6)][(PtMe3)2(μ-I)(μ-pz)2] (4; 18C6 = 18-crown-6, Hpz = pyrazole) with Ag(BF4) and MeSSMe resulted in the formation of dinuclear complexes [(PtMe3)2(μ-pz)2(μ-MeSSMe)] existing at room temperature in acetone solution as different fast interconverting isomers. At –40 °C, two isomers with a μ-1κS:2κS (5a) and a μ-1κS:2κS′ (5b) coordinated MeSSMe ligand in the ratio 2:1 could be identified 1H NMR spectroscopically. DFT calculations of type 5 complexes revealed the existence of two conformers with a μ-MeSSMe-1κS:2κS ligand, which differ mainly in the C–S–S–C dihedral angle (66.4 vs. 180.0° 6a/6a′). They have essentially the same energy and a very low activation barrier in acetone as solvent (1.3 kcal/mol) for their mutual interconversion. A further equilibrium structure was identified to be an isomer having a μ-MeSSMe-1κS:2κS′ ligand (6b) that proved to be only 1.9 kcal/mol higher in energy than 6a/6a′.  相似文献   

3.
The ability of cyclopentadienyl type derivatives of corannulene C20H10 and fullereneI h -C60 to form η5-π-complexes and the problem of their existence is discussed. MNDO/PM3 calculations of half-sandwich complexes η5-π-MC20H15, η5-π-MC20H 15 + , η5-π-MC60H5, η5-π-MC60H5 and sandwich complexes 2η5-π-M(C20H15)2, 2η5-π-M(C20H15)2, 2η5-π-M(C60H5)2 (M=Si, Ge, Sn, Pb) were performed. For all systems studied, local minima were found on corresponding potential energy surfaces and the heats of formation, geometric parameters, and distributions of effective atomic charges were calculated. Sandwich complexes are most likely to exist with M=Si and Ge. The energy and geometric characteristics of η5-π-complexes of corannulene were compared with those of η5-π-complexes of fullereneI h -C60. It was concluded that the results of quantum-chemical calculations of sandwich type corannulene derivatives can be used for simulation of the geometry and electronic structure of analogous complexes of fullereneI h -C60. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1649–1656, September, 1999.  相似文献   

4.
Magnetic exchange couplings in bis(ketimide) binuclear UIV/UIV complexes [Cp′2UCl]2(μ-ketimide) diuranium(IV) and [(C5H5)2(Cl)An]2(μ-ketimide) (Cp′ = C5Me4Et; ketimide = N=CMe-(C6H4)-MeC=N) have been investigated computationally using relativistic density functional theory (DFT) combined with the broken symmetry (BS) approach. Using the B3LYP hybrid functional, the BS ground state of these UIV/UIV 5f 2–5f 2 complexes has been found of lower energy than the high spin (HS) quintet state, indicating an antiferromagnetic character (estimated coupling constant |J| < 5 cm−1) which has not yet been evidenced unambiguously experimentally. On the contrary, the BP86 GGA functional overestimates greatly the antiferromagnetic character of the complexes (|J| > 100 cm−1). As recently reported for para-bis(imido) [(C5H5)3U]2(μ-imido) uranium(V) complex, spin polarization is mainly responsible for the antiferromagnetic coupling through the π-network orbital pathway within the bis(ketimide) bridge. Furthermore, spin polarization is exalted by the combined roles of the 5f metal orbitals and of the π-conjugated ketimide bridging ligand which permit electronic communication between the two uranium atoms albeit separated by a distance of the order of 10 ?. The MO analysis clarifies which MOs contribute to the antiferromagnetic coupling in the binuclear complexes under consideration and brings to light the 5f orbitals driving contribution.  相似文献   

5.
Two new Cu(II) complexes, [Cu(L1)2] (1) and [Cu(L2)2] (2) (HL1 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-methyl oxime; HL2 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-ethyl oxime), have been synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analyses show that complexes 1 and 2 have similar structures, consisting of one Cu(II) atom and two L units. In both complexes, the Cu(II) atom, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime ligands. Moreover, both complexes form an infinite three-dimensional supramolecular structure involving intermolecular C–H···Br hydrogen bonds and π···π stacking interactions between the metal chelate rings and aromatic rings. Substituent effects in the two complexes are discussed.  相似文献   

6.
Ruthenium complexes [Ru(κ3−tpy)(AsPh3)2C1]PF6 · 0.42H2O (tpy =2,2′:6′,2′′-terpyridine) (1) and a new crystal form of [Ru(κ3−tpy)(AsPh3)2Cl]BF4 (2), which crystallized without water solvate, and their comparative studies on spectral, structure and stability aspects are reported. The complexes have been characterized by elemental analyses, FAB-MS, i.r., 1H n.m.r. and electronic spectral studies. In these complexes weak C—H···Fπ and face-to-face ππ interactions lead to a single helical motif while, C—H···FX (X=F, Cl) interactions result in linear chains. Various studies on the stability of the complexes suggested that the compound containing the counter anion PF6- is more stable than the other containing BF4- as the counterpart.  相似文献   

7.
Two new mono- and dinuclear Cu(II) complexes, namely [CuL1]·0.5H2O (1) and [(Cu2(L2)2)(DMF)]·0.5DMF (2) (H2L1 = 1,2-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)]methylene-aminooxy}ethane; H2L2 = 1,3-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)] methyleneaminooxy}propane), have been synthesized and characterized by X-ray crystallography. The unit cell of complex 1 contains two crystallographically independent but chemically identical [CuL1] molecules and one crystalline water molecule, showing a slightly distorted square-planar coordination geometry and forming a wave-like pattern running along the a-axis via hydrogen bonding and π···π stacking interactions. Complex 2 has a dinuclear structure, comprising two Cu(II) atoms, two completely deprotonated phenolate bisoxime (L2)2− moieties (in the form of enol), and both coordinated and hemi-crystalline DMF molecules. Complex 2 has square-planar and square-pyramidal geometries around the two copper centers, whose basic coordination planes are almost perpendicular and form an infinite three-dimensional supramolecular network structure involving intermolecular C–H···N, C–H···O, and C–H···π(Ph) hydrogen bonding and π···π stacking interactions of neighboring pyrazole rings.  相似文献   

8.
A novel asymmetric dinuclear gold(I) complex with 3,6-diethynylphenanthroline, 3,6-bis{(PPh3)–Au–C≡C}2-phen, has been synthesized from Au(PPh3)Cl (PPh3 = triphenylphosphine) and 3,6-diethynyl-1,10-phenanthroline. The asymmetrical dinuclear gold(I) complex, 3,6-bis{(PPh3)–Au–C≡C}2-phen, demonstrated a weak phosphorescence assignable to the metal-perturbed 3 ππ* transition in the long wavelength region compared to an intense emission of the symmetrical dinuclear complex with 3,8-diethynylphenanthroline, 3,8-bis{(PPh3)–Au–C≡C}2-phen. A similar tendency of phosphorescent bands for the mononuclear gold(I) complexes with 5-ethynylphenanthroline, 5-{(PPh3)–Au–C≡C}-phen, and 3-ethynylphenanthroline, 3-{(PPh3)–Au–C≡C}-phen was observed. The absorption bands assignable to the ππ*(C≡Cphen) transition and phosphorescent emission assignable to the metal-perturbed 3 ππ* transition for these four gold(I) complexes were reasonably consistent with the results calculated by DFT and TD-DFT.  相似文献   

9.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

10.

Abstract  

Two new Co(II) complexes [Co(ipH)2(bdipH)]2+ and [Co(8-HQ)2(bdipH)] (ipH = imidazo[4,5-f][1,10]phenanthroline, bdipH = 2-(benzo[d][1,3]dioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, 8-HQ = 8-hydroxyquinoline) were synthesized and characterized in detail by elemental analysis, IR, and UV–Vis spectroscopic techniques. The effects of pH on the UV–Vis absorption and emission spectra of the complex were studied. The interaction of the two complexes with calf thymus DNA was explored by using viscosity measurements, electronic absorption titration, competitive binding experiments, and cyclic voltammetry. The experimental results show that complex [Co(ipH)2(bdipH)]2+ exhibits pH-sensitive emission, the two complexes can bind to DNA in an intercalation mode, and the DNA binding affinity of complex [Co(ipH)2(bdipH)]2+ (K b = 2.11 × 105 M−1) is greater than that of complex [Co(8-HQ)2(bdipH)] (K b = 1.76 × 105 M−1). The results show that the size and shape of the ancillary ligand have significant effects on the binding affinity of DNA and complexes.  相似文献   

11.
The complexes trans-[Ni(4-MP)2(NCS)2]·MeCN (1) and trans-[Ni(3-MP)2(NCS)2] (2) (4-MP = tri(4-methylphenyl)phosphine, 3-MP = tri(3-methylphenyl)phosphine) were prepared and characterized by IR, UV–visible, NMR spectra, CV, TGA and single crystal X-ray crystallography. Both the complexes have planar geometry and are diamagnetic. The Ni–P distances in both complexes are relatively short as a result of strong back donation from nickel to phosphorus. The phenyl rings in the 3-MP analogue (2) show increased pitching with reference to the plane formed by the ipso carbons due to increased steric effects. For complex (2), the N–Ni–N and P–Ni–P angles are significantly lower than the almost linear N–Ni–N and N–Ni–P angles observed for both complex (1) and trans-[Ni(PPh3)2(NCS)2]. This observation indicates that the 3-methylphosphine ligand forces complex (2) to distort towards a tetrahedral geometry. IR spectra of both complexes show strong bands around 2,090 cm−1 due to N-coordinated thiocyanate, while the electronic spectra contain d–d transitions around 452 nm. Cyclic voltammograms show that the irreversible one-electron reduction potentials increase in the following order: trans- [Ni(PPh3)2(NCS)2] < trans- [Ni(3-MP)2(NCS)2] < trans-[Ni(4-MP)2(NCS)2], revealing the electron releasing effect of the methyl groups. The planar complexes exhibit interallogony in coordinating solvents.  相似文献   

12.
A density functional theory (DFT) investigation on novel sandwich-type D 5 [C5Li5]Mg n [C5Li5] (n = 2–8) complexes containing –Mg–Mg– chain has been performed in this work. The equilibrium geometries, electronic structures, vibrational frequencies, and stabilities of these complexes are researched by B3LYP and BP86 methods at 6-311+G(d) levels of theory. The Mg n 2+ sandwich complexes with D 5 symmetry are all true minima on the potential energy surface. NBO analyses for the series of complexes reveal that the Mg–Mg bond is a weak σ covalent bond. There are mainly electrostatic interactions between C5Li5 ligands and Mg n 2+(n = 2–8) nuclear in these complexes. The NICS and NICSzz computed with GIAO-B3LYP/6-311+G(d) indicates that the C5Li5 rings in the series of complexes are aromatic. These novel complexes turn out to be strongly thermodynamically favored in the gas phases and may be targeted in future experiments to expand the structural domain of sandwich-type complexes.  相似文献   

13.
Abstract  To explore the influence of the anthracene ring skeleton, with a large conjugated π-system, on the structures and properties of its complexes, two MnII complexes with anthracene-9-carboxylate ligand were synthesized and structurally characterized: {[Mn(L)2(H2O)2](H2O)} (1) and [Mn2(L)4(phen)2(μ-H2O)](CH3OH) (2) (L = anthracene-9-carboxylate and phen = 1,10-phenanthroline). Complex (1) has a one-dimensional (1D) chain structure that is further assembled to form a two-dimensional (2D) sheet, and then an overall three-dimensional (3D) network by π···π stacking and/or C–H···π interactions. Complex (2) makes a dinuclear structure by incorporating the chelating phen ligand, which is further interlinked via inter-molecular π···π stacking and C–H···π interactions to generate a higher-dimensional supramolecular network along the different crystallographic directions. The results reveal that the bulky anthracene ring skeleton in L, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of complexes (1) and (2). The magnetic properties of (1) and (2) were further investigated. As expected, the very long inter-metallic separations result in weak magnetic coupling, with the corresponding coupling constant values of J = −10 cm−1 for (1) and J = −2.46 cm−1 for (2). Graphical abstract  The constructions of two new MnII complexes comprising 1D chain (1) and dinuclear subunit (2) structures have been successfully achieved by using a bulky anthracene-9-carboxylic acid (HL), together with incorporating the chelating 1,10-phenanthroline as a co-ligand for (2). The result reveals that the bulky anthracene ring skeleton of HL, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of the supramolecular architectures of (1) and (2). Moreover, magnetic properties of the complexes have been investigated.   相似文献   

14.
Reaction of 2,4-disubstituted phenols with paraformaldehyde in the presence of SnCl4 and 2,6-lutidine afforded a number of new salicylaldehydes, containing bulky substituents (tert-butyl, 1-phenylethyl, 1-(4-tert-butylphenyl)ethyl, α-cumyl, and trityl) in the positions 3 and 5. Dedicated to the memory of Academician N. N. Vorozhtsov on the 100th anniversary of his birth. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1084–1088, June, 2007.  相似文献   

15.

Abstract  

Copper(II) bis(pentane-2,4-dionato-κ2 O,O′) compounds with 2-pyridone (1) and 3-hydroxypyridine (2) were prepared by the reaction of bis(pentane-2,4-dionato-κ2 O,O′)copper(II) with selected ligands. The coordination of Cu(II) in both compounds is square pyramidal with the fifth coordination site occupied by the carbonyl oxygen atom of the 2-pyridone ligand in 1 and by the nitrogen atom of 3-hydroxypyridine in 2. The X-ray crystallographic studies revealed different crystal aggregation influenced by the ability of the 2-pyridone ligand to act as a hydrogen bond donor and acceptor, and 3-hydroxypyridine acting only as a hydrogen bond donor. Intermolecular N–H···O hydrogen bonding forms dimers in 1 and infinite chains in 2. Three-dimensional aggregation is achieved by π–π interactions and C–H···π (arene) hydrogen bonding.  相似文献   

16.
Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)][BF4] (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne generates the unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. A possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] is suggested. Graphical Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne simply generates unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. And the possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] was suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Two novel bimetallic complexes, [Cr(CO)3(η 6-C6H5)–C≡C–C6H4–Fc] (Fc = C5H5FeC5H4] (1) and [Cr(CO)3(η 6-C6H5)–C ≡ C–Fc–C(CH3)2–Fc] (3), were synthesized by the Sonogashira coupling reaction. By using of (1) and (3) as ligands to react with Co2(CO)8, two others novel polymetallic complexes, [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}–C6H4–Fc] (2) and [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}Fc–C(CH3)2–Fc] (4) were obtained. Four carbonyl complexes were characterized by elemental analysis, FT-IR, NMR and MS. The molecular structures of complexes (1), (2) and (4) were determined by single crystal X-ray diffraction. The interactions among the ferrocenyl, Cr(CO)3 and Co2(CO)6-η 2-μ 2-C≡C– units were investigated by cyclic voltammetry.  相似文献   

18.
The reaction of dodecacarbonyltriruthenium with cinnamaldehyde yielded a mixture of the known H4Ru4(CO)12, H2Ru4(CO)13, and H2Ru6(CO)18, and Ru6C(CO)17 clusters and the 1,1,1,2,2,2,3,3,3-nonacarbonyl-1,2;1,3-(μ3-dihydrido)-1,3-σ;2-π-[μ32-(pheny)vinylidene]triangulotriruthenium complex. The structure of the last-mentioned compound was established by X-ray diffraction study. The mechanism of the reaction and a possible pathway of formation of the vinylidene complex are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1008–1011, May, 1998.  相似文献   

19.
Two multiple-layer heterometallic MnII–AgI coordination polymers, {MnII(ampyz)(H2O)[Ag2I(CN)3][AgI(CN)2]·ampyz} n (1) and {[MnII(benzim)2[AgI(CN)2]2][(benzim)AgI(CN)]·H2O} n (2) where ampyz = 2-aminopyrazine and benzim = benzimidazole, have been prepared and structurally characterized. Compound 1 reveals a multiple-layer two-dimensional network with strong hexanuclear argentophilic interactions leading to an infinite three-dimensional framework. Compound 2 has an unprecedented double-layer two-dimensional squared grid-type network with (4,4) topology through AgI···AgI and π–π interactions between two adjacent squared layers. These double-layer networks of 2 are linked to others by π–π interactions, leading to a three-dimensional framework.  相似文献   

20.
2-(Methyl)-4-(arylazo)imidazole (RLH) (1, 2) are new series of azoimidazoles. Upon treatment of alkylhalide in dry THF in presence of NaH has synthesised 1-alkyl-2-(methyl)-4-(arylazo)imidazole (RLR′) (3, 4). They belong to the azoimine family of N,N′-chelating ligand. They stabilize the Cu(I) oxidation state and we have synthesized [Cu(RLR′)2](ClO4) (5, 6). These complexes show a moderately intense visible band (500–600 nm) which has been assigned to 3d(Cu) → π*(ligand) transition. Ag(I) complexes of RLR′ (7, 8) are also very stable under ambient conditions and show weak transitions in the visible region. The Cu(I)-complexes show high potential Cu(II)/Cu(I) redox couple > 0.4 V vs Ag, AgCl/Cl reference electrode. All these complexes have been structurally characterized by 1H NMR spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号