首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of Co(II), Ni(II), Zn(II), and Cu(II) perchlorates and hexafluorophosphates with 4′-(4″-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L) [M(L)2](ClO4)2 · 3H2O and [M(L)2](PF6)2 · 2H2O were synthesized. The spectral criteria of ligand coordination through the terpyridine nitrogen atoms were established. An assumption concerning the benzo-15-crown-5 conformation in the ligand molecule in the synthesized complexes was made. The extraction and ion-selective properties of L were studied.  相似文献   

2.
The reaction of [TcNCl2(PPh3)2] with 2,2′:6′,2″-terpyridine producedcis-[TcNCl2(terpy)] selectively. The resulting complexes were characterized by1H NMR and IR spectroscopy. The geometries of thecis andtrans isomers were estimated by theoretical calculations following a density functional method. Thecis isomer is likely more stable than thetrans one with respect to thetrans influence of the nitrido ligand. Furthermore, the behavior of nitridotechnetium complexes in polar solvents was compared to Os-analogues.  相似文献   

3.
The homoleptic compound Ru(II)(L)2 where L = 4′-carboxylato-2,2′:6′,2″-terpyridine was employed as a bridge to link two [Mo2(O2CBu t )3]+ units in the formation of the title complex: [Mo2(O2CBu t )3]2-μ-Ru(II)L2] (2+) [BF4]2, which has been characterized by 1H-NMR, UV–vis and emission spectroscopy, MALDI-TOF-MS and cyclic voltammetry. The electronic structure of the complex has been investigated by density functional theory employing Turbomole on the model complex cation [Mo2(O2CH)3]2-μ-(Ru(II)L2)2+. The intense blue color of the cation arises from M2 δ to bridge/terpyridine charge transfer. This paper is dedicated to Prof. F. A. Cotton in memoriam.  相似文献   

4.
Two polypyridyl ligands, 5-(4′-ethynylbenzo-15-crown-5)-2,2′-bipyridine (L1) and 3-bromo-8-(4′-ethynylbenzo-15-crown-5)-1,10-phenanthroline (L2), and their Ru(II) complexes [(bpy)2RuL](PF6)2 have been prepared and characterized. Both complexes exhibit metal-to-ligand charge transfer absorption at around 452 nm and emission at around 640 nm in MeCN solution. Electrochemical studies of the complexes reveal a Ru(II)-centered oxidation at around 1.31 V and three ligand-centered reductions. The binding ability of the complexes with Na+ has been investigated by UV/Vis absorption, emission, and electrochemical titrations. Addition of Na+ to MeCN solutions of both complexes results in a progressive enhancement of the emission, a red-shift of the UV/Vis absorption, and a progressive cathodic shift of the Ru(II)-centered E 1/2 couple. The stability constants for the 1:1 stoichiometry adducts of the complexes with Na+ have been obtained from the UV/Vis absorption titrations.  相似文献   

5.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

6.
Two complexes of formula [Cu(terpy)(H2O)](CF3SO3)2 (1) and [Cu(terpy)(OH)]BPh4 (2) (terpy=2,2′∶6′,2″-terpyridine and BPh4=tetraphenylborate anion) have been synthesized and characterized by spectroscopic techniques. The x-ray crystal structure of (1) has been determined by x-ray diffraction. The structure is made up of [Cu(terpy)(H2O)]2+ mononuclear cations plus semi-coordinated CF3SO3 anions. The coordination geometry around the copper atom is approximately elongated tetragonal octahedral. The oxygen atom of water and the three nitrogen atoms of terpy occupy the equatorial sites whereas the apical ones are filled by trifluoromethanesulphonate oxygen atoms. The formation of hydroxo complexes of [Cu(terpy)(H2O)]2+ has been investigated by potentiometry in aqueous solutions and the constants of the Equilibria (1) and (2)   相似文献   

7.
The new tetradentate symmetrical (2R,2′S)-1,1′-piperazine-1,4-diyldipropane-2-thiol) (L1), (2S)-1-[bis(2-aminoethyl)amino]propan-2-ol) (L2), and 2-{(E)-[((1R,2S)-2-{[(1Z)-(2-hydroxy phenyl)methylene]amino}cyclohexyl)imino]methyl}phenol (L3) ligands were synthesized and characterized on the basis of FT-IR, 1H, 13C NMR, EI mass, and elemental analysis. Three commercially available ligands, (2,2′-[ethane-1,2-diylbis(thio)]diethanol (L4), 2,2′-dithiodiethanenamine (L5), and (2,2′-[ethane-1,2-diyldi(imino)] diethanol (L6), were also studied. Pt(II) complexes were characterized by FTIR, elemental analysis and thermal methods. Thermal behaviors of these complexes were investigated in the range 10–1000 °C. Magnetic properties were also studied, and the all complexes were found to be diamagnetic. The structures consist of the monomeric units in which the Pt(II) atoms exhibit square planar geometry. N,N′-bis(salicylidene)-1,2-cyclohexane has been synthesized and characterized by X-ray single crystal diffraction measurement. The ligand crystallizes in monoclinic crystal system and space group, Cc.  相似文献   

8.
Mimicking the Superoxide Dismutase Enzyme (SOD), several imidazolato-bridged copper(II)-zinc(II) complexes were prepared, characterised by IR spectroscopy and their SOD enzyme activity was determined. 2,2′-Bipyridine, 2,2′:6′,2″-terpyridine and tris(2-aminoethyl)amine molecules were used on both metal sides, as coordinating ligands. The complex, containing the 2,2′:6′,2″-terpyridine ligand on copper side has the smallest SOD activity, which indicates the importance of the rigidity of the copper complex in SOD activity.  相似文献   

9.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

10.
Reactions of 2-hydroxy-1-naphthaldehyde with 1,4-diaminobutane, 1,6-diaminohexane, 4,4′-methylenedianiline and its alkyl- and cycloalkyl-sybstituted derivatives, with 4,4′-sulfonyldianiline, 2,2′- and 4,4′-oxydianiline, 4,4′-(1,4-phenylenebisoxy)dianiline, 4,4′-[propane-2,2-diylbis(1,4-phenylenebisoxy)]dianiline, and p-terphenyl-4,4″-diamine afforded a series of the corresponding diimines that at treating with TiCl2(OPr-i)2 formed mono- and binuclear complexes of titanium(IV) dichloride with tetradentate ligands LTiCl2 and L2(TiCl2)2.  相似文献   

11.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

12.
4-[4-(Bromomethyl)phenyl]-2,2:6,2-terpyridine reacts with triethylenetetraamine or tetraethylenepentaamine in CH2Cl2 to yield the ligands L1 and L2, respectively. Reaction of L1 and L2 with Ru(mtpy)Cl3 (mtpy = 4-methyl-2,2:6,2-terpyridine) in MeOH yielded, after column chromatography and precipitation with [NH4][PF6], the compounds [Ru(L1)(mtpy)][PF6]2 and [Ru(L2)(mtpy)][PF6]2. These metallo-receptors contain triethylenetetraamine or tetraethylenepentaamine recognition sites and [Ru(tpy)2]2+ cores as fluorescent signalling subunits. The fluorescent behaviour of [Ru(L1)(mtpy)]2+ and [Ru(L2)(mtpy)]2+ in the presence of metal ions and anions has been studied in MeCN:H2O (70:30 v/v) as a function of the pH.  相似文献   

13.
The mononuclear complexes (η3-terpy)M(Piv)2·MeCN (M = Fe ii (3) and Co ii (4), and Piv is the pivalate anion) were synthesized by the reactions of polymeric iron(ii) and cobalt(ii) pivalates with 2,2′:6′,2″-terpyridine (terpy). The oxidation of compound 3 affords the pentanuclear heterospin iron(ii,iii) complex (η3-terpy)Fe54-O)(μ3-OH)(μ-OH)2(μ-Piv)71-Piv)2 (5). All compounds were characterized by X-ray diffraction. Dedicated to the 90th anniversary of the L. Ya. Karpov Institute of Physical Chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1186–1190, June, 2008.  相似文献   

14.
Co(II), Ni(II), Cu(II) and Cd(II) chelates with 1-aminoethylidenediphosphonic acid (AEDP, H4L1), α-amino benzylidene diphosphonic acid (ABDP, H4L2), 1-amino-2-carboxyethane-1,1-diphosphonic acid (ACEDP, H5L3), 1,3-diaminopropane-1,1,3,3-tetraphosphonicacid (DAPTP, H8L4), ethylenediamine-N,N′-bis(dimethylmethylene phosphonic)acid (EDBDMPO, H4L5), O-phenylenediamine-N,N′-bis(dimethyl methylene phosphonic)acid (PDBDMPO, H4L6), diethylene triamine-N,N,N′,N′,NN″-penta(methylene phosphonic)acid (DETAPMPO, H10L7) and diethylene triamine-N,N″-bis(dimethyl methylene phosphonic)acid (DETBDMPO, H4L8) have been synthesised and were characterised by elemental and thermal analyses as well as by IR, UV–VIS, EPR and magnetic measurements. The first stage in the thermal decomposition process of these complexes shows the presence of water of hydration, the second denotes the removal of the coordinated water molecules. After the loss of water molecules, the organic part starts decomposing. The final decomposition product has been found to be the respective MO·P2O5. The data of the investigated complexes suggest octahedral geometry with respect to Co(II) and Ni(II) and tetragonally distorted octahedral geometry with respect to Cu(II). Antiferromagnetism has been inferred from magnetic moment data. Infrared spectral studies have been carried out to determine coordination sites.  相似文献   

15.
A new chromone-substituted dihydrotriflavonol, (2S,3S)[6-{(3S) 3″,5″-dihydroxy-6″-methoxydihydrochromone}5,3′,4′,5′-tetrahydroxy-7-methoxy-3-O-8-dihydroflavone]2 3-O-8[6-{(3S) 3″,5″-dihydroxy-6″methoxydihydrochromone}3,5,3′,4′,5′-pentahydroxy-7-methoxydihydroflavonol] was isolated from the leaves of Anogeissus pendula. The structure was determined by UV, 1H NMR, 13C NMR, HMBC, and CD data.  相似文献   

16.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

17.
Three novel unsymmetric tridentate ligands, namely, ptmi (ptmi = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-methoxyisatin), pti (pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin), ptni (ptni = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-nitroisatin), and their complexes [Ru(tpy)(ptmi)](ClO4)2 (tpy = 2,2′:6′,2″-terpyridine) (1), [Ru(tpy)(pti)](ClO4)2 (2), and [Ru(tpy)(ptni)](ClO4)2 (3) were prepared and characterized by elemental analysis, 1H NMR, ES–MS. The electrochemical behaviors were studied by cyclic voltammetry. The DNA-binding properties of these complexes were investigated by the spectroscopic method, viscosity measurements, and thermal denaturation. Theoretical studies on these complexes were also performed with the density functional theory (DFT) method. The experimental results showed that these complexes bind to calf thymus (CT-DNA) in an intercalative mode. The order of DNA-binding affinities (A) of these complexes is A(1) < A(2) < A(3). The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the DFT calculations.  相似文献   

18.
The reaction of 2,2′-di(2-hydroxybenzaliminoethyl) disulfide (H2L1) and 2-[(2-thioethyl)iminomethyl]phenol (H2L2) with MCl2·xH2O (M = Co, Ni, Cu) afforded the [M2(L1)Cl2] and [M(L2)]2 complexes, respectively. Their structures were determined by the data of electronic and IR spectroscopy and PM3 quantum chemical calculations. The H2L1 ligand and the complexes were studied by electrochemistry (CV and using a rotating disk electrode). The primary electronic changes are localized on the ligand fragment upon the electrochemical oxidation and reduction of the complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1325–1330, July, 2007.  相似文献   

19.
The new [Ru11(PPh3)2L2] complexes [L=monoanion of tropolone, benzoylacetone, or 3-hydroxy-2-pyridinone (hypy)], [RuH(PPh3)3L′][HL′=maltol, dibenzoylmethane or 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmhypy)] and [RuIIIX2(EPh3)2L″] complexes (X=Cl, Br; E=As or P; L″=hypy, dmhypy) have been prepared, and characterized by spectroscopic techniques. Their redox behaviour was studied by cyclic voltammetry. Most of the complexes were found to be effective catalysts for the oxidation ofp-methoxybenzyl alcohol to the corresponding aldehyde in the presence ofN-methylmorpholine-N-oxide as co-oxidant.  相似文献   

20.
Two macrocyclic dinuclear complexes, [Cu2L1](PF6)2 and [Cu2L2](ClO4)2, were synthesized by cyclo-condensation between N,N′-bis(3-formyl-5-methylsalicylidene)ethylenediimine or N,N′- bis(3-formyl-5-n-butylsalicylidene)ethylenediimine and ethylenediamine in the presence of Cu2+ ions. The crystal structures of the complexes were studied. The variable-temperature magnetic susceptibilities and cyclic voltammograms of the complexes were measured. The magnetic and electrochemical properties of the complexes were discussed. The results show that the complexes display very strong antiferromagnetic exchanges and that all copper(II) complexes undergo a one-electron transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号