首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric-pressure plasmas are used in a variety of materials processes. Traditional sources include transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges. In arcs and torches, the electron and neutral temperatures exceed 3000°C and the densities of charge species range from 1016-1019 cm-3. Due to the high gas temperature, these plasmas are used primarily in metallurgy. Corona and dielectric barrier discharges produce nonequilibrium plasmas with gas temperatures between 50-400°C and densities of charged species typical of weakly ionized gases. However, since these discharges are nonuniform, their use in materials processing is limited. Recently, an atmospheric-pressure plasma jet has been developed, which exhibits many characteristics of a conventional, low-pressure glow discharge. In the jet, the gas temperature ranges from 25-200°C, charged-particle densities are 10 11-1012 cm-3, and reactive species are present in high concentrations, i.e., 10-100 ppm. Since this source may be scaled to treat large areas, it could be used in applications which have been restricted to vacuum. In this paper, the physics and chemistry of the plasma jet and other atmospheric-pressure sources are reviewed  相似文献   

2.
Formation of an atmospheric pressure dusty air plasma is explored experimentally in this paper. The plasma is created by seeding an air flow with graphite particles and irradiating the particulates with a focused CO2 laser beam. The graphite particles are, thus, heated to thermionically emitting temperatures, and average particle temperatures and average particle number densities are measured. The presence of charges is inferred both from these measured quantities using a simple theoretical transient model, and experimentally by applying a dc bias across the irradiated region. It is found that an electron density of ~6.7 × 105 cm-3 (6.7 × 1011 m-3) can be produced at steady state in the presence of O2. This value can be increased to 3.6 × 107 cm-3 (3.6 × 1013 m -1) in the ideal case where an electron attachment to O2 is suppressed and where a lower work function particulate is used  相似文献   

3.
A plasma source for obtaining a 1-cm length of high-fractional ionized plasmas with electron densities in the range of 1015-1017 cm-3 is described. The source consists of a capacitive discharge between a metal anode and an array of small metal cathodes embedded in epoxy, each with a current-limiting resistor. The effect is to have an array of sources which merge into each other, producing the plasma as a whole. The design and performance of the plasma source are presented. The entire system consists of the main electrode and shielding structures, the preionization circuit, and the main discharge circuit. Each of these components is described and the operating parameters and results are given  相似文献   

4.
High electron and hole (e-h) densities of about 1022 cm-3 have been produced in silicon, using 620 nm wavelength laser pulses of 100 fs duration. These density values are determined by measuring the dependence of the pulse self-reflectivity on its energy. By comparison with a fully non-linear model of light propagation, we show that dissipation processes inside the plasma are dominated by e-h collisions, with a characteristic time of 3 × 10-16s. The onset of melting within 100 fs and its nature, considering the high plasma density, are also discussed in view of scattered light measurements.  相似文献   

5.
Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or back-lighted thyratron switch plasma with a peak electron density of 1-3×1015 cm-3 and peak current density of ≈104 A/cm2. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies ⩾100 eV and density of 1013-1014 cm-3 into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2=1016 cm-3 and electron temperature of 0.8-1 eV, the estimated beam density is ≈1013 -1014 cm-3. These results suggest the possibility of producing in a simple way a very high-density electron beam  相似文献   

6.
S—Ka频段电磁波在等离子体中传输特性的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
马昊军  王国林  罗杰  刘丽萍  潘德贤  张军  邢英丽  唐飞 《物理学报》2018,67(2):25201-025201
在感应耦合等离子体风洞上开展了等离子体中电磁波传输特性实验研究,获得了不同频率电磁波在等离子体中的传输衰减.通过微波诊断技术,获得了等离子体射流的电子数密度和碰撞频率.通过矢量网络分析仪和标准增益天线组成的电磁波传输特性测试系统,获得了电磁波经过等离子体之后的衰减,研究了电子数密度范围7.0×10~(10)-1.0×10~(13)cm~(-3)、等离子体碰撞频率在109 Hz量级的等离子体对2.6—40 GHz不同频率电磁波传输特性的影响,分析了经典传输理论和薄层理论预测结果与实验结果的差异.该实验工作为等离子体中电磁波传输特性的理论研究和数值仿真提供了基础数据.  相似文献   

7.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

8.
This paper analyses a self-consistent current motion of charged particles in high-current plasma channel. Application of the results obtained to real current channels is possible provided that pair collisions do not considerably affect the current motion of plasma charged particles and the depth of the current layer is small as compared to the channel radius. The approximation adopted in this paper can be considered to be true, for instance, in the case of hydrogen channels with millimeter radius and electron energy of the order of 10 keV provided that the plasma concentration in them is in the range of 10 17 cm-3e<1020 cm-3. In the present paper, advantage is taken of a kinetic plasma model with electrons and ions in the form of particle beams whose motion is governed by the resulting self-consistent electromagnetic field. It is shown that in a plasma with sufficiently high particle concentration, when the collisionless skin depth is small as compared to the channel radius, the ion motion results in the negative electron contribution to the total channel current. Moreover, the ion component of the current exceeds the total current. This is accompanied by high-speed plasma motion in the form of the electroneutral axial flux, whose direction coincides with that of the total channel current  相似文献   

9.
We report band edge absorption spectra of GaAs under conditions of high electron-hole pair excitation in the range of 1013-1017 cm-3 achieved with picosecond light pulses tuned (i) to the 1s exciton energy and (ii) to the continuum (ω#62;Eg), where critical densities for bleaching of the exciton absorption lines are much lower. A substantial blue shift of the 2s absorption line relative to the 1s exciton was found, the latter remained constant in energy up to complete bleaching.  相似文献   

10.
Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification(BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter and density are 50–200 μm and 1–2 × 10~(19)cm~(-3),here we enhance them to 0.8 mm and 8 × 10~(19)cm~(-3), respectively. Moreover, the gradient plasma is investigated in our experiment. A proper plasma gradient can be obtained with suitable pulse energy and delay. The experimental results are useful for plasma physics and nonlinear optics.  相似文献   

11.
An industrial TEA-CO2 laser, operating at a wavelength of 10.6 μm, has been used to produced broadband ultrasonic pulses in polymers. The generation mechanism falls into three categories. At low power densities ≤ 107 W cm−2 a thermoelastic regime predominates. As the power density is increased in the range (1–5) × 107 W cm−2 ablation of the material surface plays an increasingly important role in the acoustic generation. Thirdly, at greater power densities, plasma breakdown just above the material surface serves as the means of generation. This paper describes the acoustic sources for these types of generation mechanism and presents theoretically calculated acoustic waveforms to match those recorded experimentally.  相似文献   

12.
为研究电离种子在火药燃气作用下产生等离子体的规律,建立了密闭爆发器(定容)条件下电离种子产生等离子体的数学模型,设计了火药燃气作用下电离种子产生等离子体的试验系统。采用某型火炮发射药和不同种类的电离种子分别进行了试验,结果表明:电离种子在火药燃气作用下可以产生等离子体,加入钾盐和铯盐后电子密度分别为2.25×1018m−3 和4.63×1018m−3,铯盐电离效果优于钾盐。通过试验数据和仿真结果比对,发现它们保持在同一数量级内。  相似文献   

13.
In order to study the plasma generation of ionized seeds under the action of gunpowder gas, a mathematical model under the condition of closed bomb (constant volume) was established, and a plasma test system was designed. Experiments were carried out with a certain type of artillery propellant and different kinds of ionized seeds. The results show that the ionized seeds can generate plasma under the action of gunpowder gas, and the electron densities are 2.25×1018m−3 and 4.63×1018m−3 after adding potassium salt and barium salt, respectively. The strontium salt ionization effect is better than the potassium salt. Under the test conditions, the simulation results are roughly in agreement with the test data.  相似文献   

14.
A method of generating odd harmonics from an intense laser incident upon a sharp vacuum-overdense plasma interface is presented. One- and two-dimensional simulations are used to investigate the interaction of ultra-intense laser pulses with a sharp vacuum-plasma interface. With an intensity greater than 1018 W/cm2 , these pulses have a pressure greater than 103 Mbar creating large density oscillations and relativistic electron velocities at the surface. This results in efficient odd harmonic generation. The author present is a physical model for this harmonic generation mechanism, along with some scaling of the power in the third harmonic. This is compared with relativistic particle-in-cell simulations that include mobile and immobile ions, as well as a variety of upper shelf densities. A discussion on how ion profile modifications influence the harmonics is also presented  相似文献   

15.
In order to extend plasma accelerators, the laser beam has to be guided inside gas or plasma over a distance of the order of the dephasing length, which is typically much larger than the diffraction length zR of the laser. A capillary tube can be used as a waveguide for high-intensity laser pulses over distances well in excess of zR. Experimental demonstration of monomode guiding over 100 zR of 1016 W/cm2 pulses has been obtained in evacuated capillary tubes (45-70-μm inner diameter). A drop of transmission has been observed when the intensity of the amplified spontaneous emission (ASE) is high enough to ionize the capillary tube entrance. Propagation in helium gas-filled (10-40 mbar) capillary tubes has been studied at intensities up to 1016 W/cm2; a plasma column with on-axis density of the order of 1017 cm-3 has been created on a length of the order of 4 cm. The use of a capillary tube for an extended accelerator is discussed for the ease of linear, resonant excitation of plasma waves by laser wakefield  相似文献   

16.
An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder,electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit–Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60 × 10~(27)m~(-3), for lasers with an intensity of 4×10~(22)W·cm~(-2). Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics.  相似文献   

17.
耦合了轻粒子发射的随机Langevin模型被用于计算三个Bi裂变系统因核耗散效应引起的相对于标准统计模型预计的裂变截面值的变化,σfdrop作为激发能的函数。发现209Bi的σfdrop要大于202Bi和195Bi的σfdrop,这表明高同位旋系统209Bi的裂变截面对摩擦强度有更大的敏感性。该结果建议,当实验上使用裂变激发函数来更精确地提取鞍点前摩擦强度时,应产生具有高同位旋的复合核。进而,通过Langevin计算拟合p+206Pb和p+209Bi反应的裂变激发函数数据,提取的鞍点前摩擦强度为(3~5)×1021 s-1。Langevin models that are coupled with particle emission are applied to calculate the drop of fission cross section caused by friction over its standard statistical-model value, σfdrop, as a function of excitation energy for three Bi nuclei with different isospins. We find that σfdrop become larger for 209Bi than for 202Bi and 195Bi, indicating a greater sensitivity of fission cross section to friction for high-isospin 209Bi. These results suggest that, to more accurately determine the presaddle dissipation strength by measuring fission excitation functions, it is best to populate those compound systems with a high isospin. Furthermore, we analyze the data of fission excitation functions measured in p + 209Bi and p + 208Pb reactions, which yield high-isospin 210Po and 209Bi systems, and extract a presaddle friction strength of (3-5)×1021 s-1 by comparing Langevin simulations with these experimental data.  相似文献   

18.
Experimental results are reported for the Hanle effect on the 3 2S1/2 ↔ 3 2P1/2 transition of sodium at vapour densities between 109 and 1012 at/cm3.  相似文献   

19.
The authors describe the vacuum-arc plasma centrifuge developed at the Institute for Space Research (INPE) in Brazil. The experiment is characterized by its relatively small dimensions. Angular rotation frequencies in the range of 1.9×105 rad/s to 3.5×105 rad/s, measured with langmuir probes, are presented for a magnesium plasma. Enrichments of 15% for 25Mg and 26% for 26Mg were measured with a quadrupole mass spectrometer. The dependence of magnesium isotope enrichments upon the magnetic field is also presented. It is noted that the existence of an optimum value for the B field is important for future scaling laws of plasma centrifuges  相似文献   

20.
The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10 11 cm -3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号