首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来 ,自组装膜的研究不断引起人们重视[1] .一方面 ,其兴趣可能源于纳米级器件的组装 ,如生物传感器等 [2 ] ;另一方面 ,它可作为研究摩擦学 [3]、生物膜模拟 [4 ]和微观浸润性的模型体系 [5] .树枝状分子的结构可在分子水平上精确控制 ,是很有潜力的纳米构筑基元 [6 ] .不同于常规的自组装膜构筑基元 ,树枝状分子的特殊结构使其在金属表面形成某些特殊的组装结构成为可能 .结合界面分子自组装技术和树枝状分子化学 ,国内外已有机构开展了树枝状硫醇的自组装膜的研究[7~ 9] .我们曾发现一种聚醚树枝状硫醇分子在金表面形成的自组装单层…  相似文献   

2.
Layers formed from single-stranded DNA on nanostructured plasmonic metals can be applied as “working elements” in surface–enhanced Raman scattering (SERS) sensors used to sensitively and accurately identify specific DNA fragments in various biological samples (for example, in samples of blood). Therefore, the proper formation of the desired DNA layers on SERS substrates is of great practical importance, and many research groups are working to improve the process in forming such structures. In this work, we propose two modifications of a standard method used for depositing DNA with an attached linking thiol moiety on certain SERS-active structures; the modifications yield DNA layers that generate a stronger SERS signal. We propose: (i) freezing the sample when forming DNA layers on the nanoparticles, and (ii) when forming DNA layers on SERS-active macroscopic silver substrates, using ω-substituted alkanethiols with very short alkane chains (such as cysteamine or mercaptopropionic acid) to backfill the empty spaces on the metal surface unoccupied by DNA. When 6-mercapto-1-hexanol is used to fill the unoccupied places on a silver surface (as in experiments on standard gold substrates), a quick detachment of chemisorbed DNA from the silver surface is observed. Whereas, using ω-substituted alkanethiols with a shorter alkane chain makes it possible to easily form mixed DNA/backfilling thiol monolayers. Probably, the significantly lower desorption rate of the thiolated DNA induced by alkanethiols with shorter chains is due to the lower stabilization energy in monolayers formed from such compounds.  相似文献   

3.
Self-assembled monolayers (SAMs) with metal electrodes, especially thiols on gold, are the subject of this investigation because of the unique properties of SAM-modified surfaces. Normal alkanethiols are used to modify the surface of a conventional gold electrode to block certain ions such as Pb(II) and Cu(II) from the surface of the electrode. Normal alkanethiols are also used to study the SAM-gold interfacial adsorption-desorption behavior of the self-assembled monolayer. The effects of varying chain length of SAMs, varying concentration of the alkanethiol solutions, immersion time of the pure gold electrode in the SAM solution, and the stability of a SAM-modified gold electrode in fresh chloroform are investigated using the oxidation-reduction peaks of gold. Conditions that optimize the surface coverage and the uniformity of the SAMs have been determined. Normal alkanethiols proved to be a good insulator on the electrode surface. Received: 16 January 1997 / Accepted: 4 March 1997  相似文献   

4.
Self-assembled monolayers (SAMs) of alkanethiols can undergo reductive desorption and oxidative re-adsorption. The Coulombic efficiency of the oxidative re-adsorption reaction is dependent on the chain length and solution pH. We show that the loss of alkanethiols from the surface after reductive desorption can be explained by a simple model that takes into account diffusion of the thiolate into the bulk solution at a rate that is determined by the bulk solubility. These results provide a quantitative basis for the determination of the loss of alkanethiols from the surface after reductive desorption.  相似文献   

5.
A self-assembled monolayer of 1-octanethiol was prepared on a Au(111) surface via liquid-phase adsorption. An investigation of the surface using ultrahigh-vacuum scanning tunneling microscopy revealed a striped phase of the octanethiol molecules under the conditions examined. This phase resembles the well-known "pinstripe" structure of alkanethiols on Au(111), with a registry that is similar to that of the previously observed p x radical3 structures. We discuss the nature of this structure with respect to those that have been observed for other n-alkanethiols.  相似文献   

6.
Adsorption of a series of ethoxylated cationic surfactants at model surfaces of alkanethiol self-assembled monolayers was studied by the surface plasmon resonance technique. Model surfaces were tailor-made by choosing alkanethiols or mixtures of alkanethiols with methyl, hydroxyl, carboxyl, and trimethylammonium groups in terminal position. The ethoxylated and quaternized cationic surfactants having from 2 to 18 oxyethylene units, showed a decrease in adsorbed amount with increasing oxyethylene chain length for both hydrophobic and hydrophilic surfaces. On a negatively charged surface, containing carboxylate groups, the surfactant with only two oxyethylene groups adsorbed strongly due to electrostatic attraction and the adsorption increased with increasing amount of surface carboxylate groups. This work shows the usefulness of self-assembled alkanethiols on gold as a tool for performing surfactant adsorption studies on surfaces with variable hydrophobicity and charge.  相似文献   

7.
A novel strategy for the immobilization of cytochrome c on the surface of chemically modified electrodes is demonstrated and used to investigate the protein's electron-transfer kinetics. Mixed monolayer films of alkanethiols and omega-terminated alkanethiols (terminated with pyridine, imidazole, or nitrile groups that are able to ligate with the heme) are used to adsorb cytochrome c to the surface of gold electrodes. The use of mixed films, as opposed to pure films, allows the concentration of adsorbed cytochrome to remain dilute and ensures a higher degree of homogeneity in their environment. The adsorbed protein is studied using electrochemical methods and scanning tunneling microscopy.  相似文献   

8.
We have used self-assembled monolayers (SAMs) prepared from omega-terminated alkanethiols on gold to generate model surfaces and examine the effect of surface composition on the adsorption of Photosystem I (PSI), stabilized in aqueous solution by Triton X-100. Triton-stabilized PSI adsorbs to high-energy surfaces prepared from HO- and HO2C-terminated alkanethiols but does not adsorb to low-energy surfaces. The inhibition of PSI adsorption at low-energy surfaces is consistent with the presence of a layer of Triton X-100 that adsorbs atop the hydrophobic SAM and presents a protein-resistant poly(ethylene glycol) (PEG) surface. While the presence of the PEG surface prevents the adsorption of PSI, the displacement of the inhibiting layer of Triton X-100 by dodecanol, a more active surfactant, greatly enhances the adsorption of PSI. This inhibiting effect by Triton X-100 can be extended to other protein systems such as bovine serum albumin.  相似文献   

9.
We have developed a process to incorporate an integral membrane protein, Photosystem I (PSI), into an organic thin film at an electrode surface and thereby insulate the protein complex on the surface while mimicking its natural environment. The PSI complex, which is primarily more hydrophobic on the exterior than interior, is hydrophobically confined in vivo within the thylakoid membrane. To mimic the thylakoid membrane and entrap PSI on an electrode, we have designed a series of steps using a thin self-assembled monolayer (SAM) to adsorb and orient PSI followed by exposures to longer-chained methyl-terminated alkanethiols that place exchange with components of the original SAM in the interprotein domains. In this process, PSI is first adsorbed onto a HOC(6)S/Au substrate through a short exposure to a dilute solution of the protein to achieve a protein coverage of approximately 25%. The PSI/HOC(6)S/Au substrate is then placed into a solution containing one of various longer-chained alkanethiols including C(22)SH or C(18)OC(19)SH. Changes in thickness, interfacial capacitance, infrared spectra, and surface wettability were used to assess the extent of backfilling by the long-chained thiols. The coverage of the protein layer and the solvent used for backfilling affected the rate and quality of the SAM formed in the interprotein regions. After exposure of the PSI layer to solvents containing alkanethiols, there was only minor loss of protein on the surface and no real change in protein secondary structure as evidenced by reflectance absorption infrared spectroscopy.  相似文献   

10.
The chain-length dependence of metastable striped phases of alkanethiols films partially covering the gold surface has been determined by means of atomic force microscopy. These structures are obtained from solution and consist of molecules adsorbed with their carbon chains flat on the surface. The stripes run parallel to the next-nearest-neighbor direction of Au(111) and have been found to always coexist with islands of upright molecules. The stripe spacing changes linearly with molecular length differently than twice the chain length. This dependence is discussed in terms of both interdigitation and herringbone-like lamella models. With time and under ambient conditions, these phases transform, without increasing coverage, by aggregation of the lying flat molecules to the preexisting islands with upright configuration.  相似文献   

11.
Using a micromechanical cantilever device, the surface stress induced during the growth of alkanedithiol (HS(CH2)nSH) monolayers on gold in solution is continuously monitored and reported. Adsorption of alkanedithiols of varying chain lengths is observed and compared to each other, as well as to the adsorption of hydroxyalkanethiols (HS(CH2)nOH) and alkanethiols (HS(CH2)nCH3). The results have revealed a significant change in surface stress on the basis of the chain length of the alkanedithiol. The long-chain (n > 10) alkanedithiol adsorption imposes a tensile stress on the gold-coated surface of the cantilever rather than the compressive stress exhibited by both alkanethiols and short-chain dithiols. Our results suggest a phenomenon in which the two thiols of the alkanedithiol adsorb onto the gold surface forming a loop inducing a tensile stress on the cantilever for long chain lengths. This study shows that micromechanical cantilever sensors can be very valuable tools in the exploration and characterization of self-assembled monolayers.  相似文献   

12.
Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambdamax, 530 m) are in equilibrium with the ordered nanocrystals in the film (lambdamax, 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorder the gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.  相似文献   

13.
This work describes the different durations of surface confinement of adhered mammalian cells by monolayers comprised of enantiomers of bio-inert polyol-terminated alkanethiols. Enhanced resistance to protein adsorption and cell adhesion is obtained on monolayers formed by a racemic mixture of the enantiomeric alkanethiols.  相似文献   

14.
《Liquid crystals》1997,23(2):175-184
The anchoring of nematic liquid crystals on self-assembled monolayers (SAMs) formed by the chemisorption of semifluorinated thiols or alkanethiols on gold is compared and contrasted. The planar anchoring of 4-n-pentyl-4-cyanobiphenyl (5CB) observed in the past on SAMs formed from alkanethiols is also observed on SAMs formed from semifluorinated thiols. The azimuthal anchoring of 5CB, however, differs on these two types of surfaces: nematic 5CB anchored on SAMs formed from alkanethiols has a grainy appearance due to the formation of domains with sizes 10 mum whereas 5CB forms large domains ( 100 mum) with diffuse branches emerging from defects of strength 1/2 when anchored on SAMs formed from semifluorinated thiols. Mixed (two-component) SAMs formed from either short and long semifluorinated thiols or short and long alkanethiols cause homeotropic anchoring of 5CB. We discuss these results in light of the known differences in the structure of SAMs formed from alkanethiols and semifluorinated thiols, i.e. the tilt of the chains and conformational freedom (flexibility) of the chains within these SAMs.  相似文献   

15.
The effect of surface topography and chemistry on cellular response is of fundamental importance, especially where living systems encounter device surfaces as in medical implants, tissue engineering, and cell-based sensors. To understand these biological processes on surfaces, there is a widespread interest in tailored surface-active materials produced by a combination of surface chemistry coupled to advanced patterning processes. We utilize self-assembled monolayers (SAMs) as molecular templates with submicrometer-scale spatial resolution to engage and cluster IgE receptors on rat basophilic leukemia (RBL) mast cells. Bioactive templates consisted of gold arrays on silicon with patterns from 1 mum down to 45 nm. These gold arrays served as molecular tethering sites, enabling covalent binding of functionalized self-assembled monolayers of alkanethiols. The free ends of the monolayers were functionalized with 2,4-dinitrophenyl(DNP)-caproate-based ligands which interact specifically with anti-DNP IgE bound to its high affinity cell surface receptor, FcepsilonRI on RBL mast cells. Present results on structures 1 mum down to 600 nm in size indicate that these ligand-immobilized patterned arrays can function as a powerful tool for visualization and systematic characterization of cell membrane involvement in IgE receptor-mediated immune cell signaling.  相似文献   

16.
This paper describes a method for modifying self-assembled monolayers (SAMs) with the nitrilotriacetic acid (NTA) group for subsequent immobilization of hexahistidine tagged proteins. The method has two important improvements over previous ones; firstly it avoids the need to carry out a complex synthesis of the chelator alkanethiols prior to deposition because the reactions are performed in situ on a preassembled SAM. This in situ approach also avoids phase segregation of alkanethiols with different functional groups, especially bulky ones such as NTA and tri(ethylene glycol), since a simple SAM is employed as the starting material. The approach reported here uses mercaptohexadecanoic acid to form a well-ordered homogeneous carboxyl-terminated SAM on a gold surface. The carboxyl group was then condensed with an NTA derivative containing an amino group to form a peptide bond. The product is a surface that, after chelating Ni(2+) ions, binds histidine tagged proteins. The loading of NTA groups can be controlled by choice of reaction conditions thereby removing the need for a second alkanethiol to dilute the surface density of chelator groups and prevent molecular crowding. Both factors allow rapid attainment of optimal protein loading. Fluorescence imaging demonstrated that (His)(6) enhanced green fluorescent protein was reversibly immobilized and importantly, was functional on the surface. Furthermore, data from surface plasmon resonance, cyclic voltammetry and fluorescence spectrometry provided additional information on the specific and reversible immobilization of (His)(6) proteins on the NTA-modified SAM surface.  相似文献   

17.
A straightforward, flexible, and inexpensive method to create patterned self-assembled monolayers (SAMs) on gold using microfluidics-microfluidic lithography-has been developed. Using a microfluidic cassette, alkanethiols were rapidly patterned on gold surfaces to generate monolayers and mixed monolayers. The patterning methodology is flexible and, by controlling the solvent conditions and thiol concentration, permeation of alkanethiols into the surrounding PDMS microfluidic cassette can be advantageously used to create different patterned feature sizes and to generate well-defined SAM surface gradients with a single microfluidic chip. To demonstrate the utility of microfluidic lithography, multiple cell experiments were conducted. By patterning cell adhesive regions in an inert background, a combination of selective masking of the surface and centrifugation achieved spatial and temporal control of patterned cells, enabling the design of both dynamic surfaces for directed cell migration and contiguous cocultures. Cellular division and motility resulted in directed, dynamic migration, while the centrifugation-aided seeding of a second cell line produced contiguous cocultures with multiple sites for heterogeneous cell-cell interactions.  相似文献   

18.
In this paper, we present a new approach for studying the electronic properties of self-assembled monolayers and their interaction with a conductive substrate, the low-energy photoelectron imaging spectroscopy (LEPIS). LEPIS relies on imaging of photoelectrons ejected from a conductive substrate and subsequently transmitted through organic monolayers. Using this method, we measure the relative work-function of alkanethiols of different length on gold substrate, and we are able to follow the changes occurring when the surface coverage is varied. We also computed the work-function of model alkanethiols using a plane-wave density functional theory approach, in order to demonstrate the correlation between changes in the work-function with the monolayer organization and density.  相似文献   

19.
A simple method is developed to synthesize gram quantities of uniform Ge nanowires (GeNWs) by chemical vapor deposition on preformed, monodispersed seed particles loaded onto a high surface area silica support. Various chemical functionalization schemes are investigated to passivate the GeNW surfaces using alkanethiols and alkyl Grignard reactions. The stability of functionalization against oxidation of germanium for various alkyl chain lengths is elucidated by X-ray photoelectron spectroscopy. Among all schemes tested, long chain alkanethiols (> or = C12) are found to impart the most stable GeNW passivation against oxidation upon extended exposure to ambient air. Further, the chemically functionalized oxidation-resistant nanowires are soluble in organic solvents and can be readily assembled into close-packed Langmuir-Blodgett films potentially useful for future high performance electronic devices.  相似文献   

20.
A novel method of immobilizing antibodies on piezoelectric crystal (P/Z) sensor was developed based on self-assembled monolayer (SAM) using alkanethiols for immunosensing. The assembly of SAMs on metal surface is relatively easy and they are closely packed, well ordered and stable in ambient conditions. Thus,SAMs are good candidates for immobilizing biomolecules onto ultrathin layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号