首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organometallic NO‐bidentate Schiff base, (2‐(1‐((1‐carboxyethyl)imino)ethyl) cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl) iron (HL) was synthesized by condensation of 2‐acetylferrocene with amino acid alanine. Then its octahedral Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) complexes were synthesized. All compounds were characterized on the basis of elemental analysis (C, H, N and M), molar conductivity, FT‐IR, UV–Vis, 1H‐NMR, SEM, mass analysis and thermal studies. Furthermore, computational studies of HL ligand have been carried out by DFT/B3LYP method. HOMO and LUMO energy values, chemical hardness‐softness, electronegativity, electrophilic index and other parameters were calculated. SEM micrographs of HL ligand and its [Cd (HL)(H2O)2Cl2].2H2O complex, showed that they were prepared in nano‐structure forms with particle size 54 and 41 nm, respectively. Antifungal and antibacterial activities of HL ligand and its metal complexes have been screened in vitro against different species such as Aspergillus fumigatus, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The synthesized compounds were evaluated for their anticancer activities against breast cancer cell line (MCF‐7) and normal melanocytes cell line (HFB‐4). It was found that [Co (HL)(H2O)2Cl2].3H2O complex had the lowest IC50 value (10.9 μg/ml) and hence was the most active one. Finally, the optimized structures of the Schiff base and its Co (II) complex have been used to accomplish molecular docking studies with receptors of 3HB5, 3MIW, 5IBV and 4WM8 to determine the most preferred mode of interaction.  相似文献   

2.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base.  相似文献   

3.
The condensation of 2‐acetylferrocene with 4‐nitro‐1,2‐phenylenediamine in a 1:1 molar ratio, resulting in formation of a novel bi‐dentate organometallic Schiff base ligand (L), (2‐(1‐((2‐amino‐5‐nitrophenyl)imino)ethyl)cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl)iron. Also, its Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have been synthesized. The stoichiometric ratios of the prepared compounds were estimated using elemental analysis (C, H, N, M), molar conductivity, FT‐IR, UV‐Vis, 1H‐NMR, SEM and mass spectral analysis. Furthermore, their TG and DTG properties were studied. The geometrical structure of the complexes was found to be octahedral. From spectral analysis, the Schiff base coordinated to metal ions through the azomethine and amine groups. DFT‐based molecular orbital energy calculations of the synthesized ligand have been studied, in which the ligand was theoretically optimized. The Schiff base and its metal complexes have been screened for their antimicrobial activities against different bacterial and fungal species by using disc diffusion method. The anticancer activities of the ligand and its metal complexes have also been studied towards breast cancer (MCF‐7) and human normal melanocytes (HFB‐4) cell lines. Molecular docking was also used to identify the interaction between the Schiff base ligand and its Cd(II) complex with the active site of the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Staphylococcus aureus (PDB ID: 3Q8U) and yeast‐specific serine/threonine protein phosphatase (PPZ1) of Candida albicans (PDB ID:5JPE).  相似文献   

4.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

5.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A novel Schiff base ligand, namely 2,2′‐((1E,1′E)‐(1,3‐phenylenebis(azanylylidene))bis(methanylylidene))diphenol (H2L), was synthesized by condensation of m‐phenylenediamine and 2‐hydroxybenzaldehyde (in 1:2 ratio). Series of complexes were obtained from the reaction of La(III), Er(III) and Yb(III) chlorides with H2L. The ligand and complexes were characterized using elemental analysis, infrared, 1H NMR, UV–visible and mass spectroscopies, magnetic susceptibility and conductivity measurements and thermal analysis. Infrared and 1H NMR spectra indicated the coordination of the azomethine nitrogens and deprotonated phenolic oxygen atoms in a tetradentate manner (ONNO). The thermal behaviour of the complexes was studied from ambient temperature to 1000°C. The complexes were found to have water molecules of hydration and coordinated water molecules. The complexes were found to possess high biological activities against various organisms compared to the free ligand (Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram‐negative bacteria Salmonella sp., Escherichia coli and Pseudomonas aeruginosa and fungi Aspergillus fumigatus and Candida albicans). The more effective and probable binding modes between H2L with different active sites of colon cancer (PDB code: 2hq6) and lung cancer (PDB code: 1x2j) receptors were investigated using molecular docking studies.  相似文献   

7.
A series of Cu(II), Co(II), Pd(II), Pt(II), Zn(II), Cd(II) and Fe(III) complexes were designed and synthesized using Schiff base 1‐phenyl‐2,3‐dimethyl‐4‐(N‐3‐formyl‐6‐methylchromone)‐3‐pyrazolin‐5‐one (HL). The new metal complexes were investigated using various physicochemical techniques including elemental and thermal analyses, molar electric conductivity and magnetic susceptibility measurements, as well as spectroscopic methods. Also, the crystal structures of ligand HL and the Pd(II) complex were determined using single‐crystal X‐ray diffraction analysis. For all compounds, the antimicrobial activity was studied against a series of standard strains: Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Escherichia coli, Acinetobacter baumannii, Candida albicans, Candida krusei and Cryptococcus neoformans. The in vitro antiproliferative activity of the ligand and complexes was evaluated against ten cancer cell lines: MSC, A375, B16 4A5, HT‐29, MCF‐7, HEp‐2, BxPC‐3, RD, MDCK and L20B. At 10 μM concentration a significant cytotoxic effect of the Co(II), Pd(II) and Cd(II) complexes was observed against B16 4A5 murine melanoma cells. The Zn(II) complex is active against HEp‐2, RD and MDCK cancer cell lines, where IC50 values vary between 1.0 and 77.6 and for BxPC‐3 the activity index versus doxorubicin is 3.7 times higher.  相似文献   

8.
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U).  相似文献   

9.
10.
Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand–receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.  相似文献   

11.
Synthesis and characterization of three novel Schiff bases based on calix[4]arene are described. The synthesis of these compounds had been achieved by the condensation of salicylaldehyde derivatives with the amine group of upper rim of de-butylcalix[4]arene in ethanol. The structures of new compounds were confirmed on the basis of IR, (1)H NMR, (13)C NMR, MS and elementary analysis. Photochromic properties of compounds were studied in CH(3)CN by UV/vis and fluorescence spectra. These Schiff base-calix[4]arene can be used in certain 'supermolecular electronic devices' through combining the photochromic behaviors with others such as non-linear optical or charge transfer properties.  相似文献   

12.
A versatile and robust mechanochemical route to Aldehyde–Schiff base conversions has been established for a broad range of aldehydes via a simple cogrinding in mortar with a pestle under a solvent‐free, as well as solvent‐assisted, environment. The extent of amines reactivity under these conditions has also been explored, along with an examination of the possible connection between reactivity and electronic substituent effects. Results obtained demonstrated that the solvent‐free mechanochemical conversion of p‐toluidine and aromatic aldehydes to the corresponding Schiff bases proceeded more smoothly than the corresponding synthesis with 4‐aminobenzonitrile. The present approach not only provides good to excellent yields but also eliminates the disadvantages of the traditional synthesis of Schiff bases, such as the use of hazardous solvents, more or less demand of expensive catalysts, and looking for optimization on reaction conditions.  相似文献   

13.
The reactions of a range of aromatic primary amines with pyridine-2-carboxaldehyde were reported, highlighting the effect of the substituents of the amine on the outcomes of the Schiff base reactions. The variant products of the Schiff base reactions were reacted with cis-[PtCl2(DMSO)2], generating platinum(II) complexes with PtCl2(N^N) general formula. The ligands and platinum(II) complexes were identified and characterized by IR and NMR spectroscopic methods. Single crystal XRD offered structural confirmation for three of the organic compounds and two platinum complexes. The spectral, antimicrobial, DNA-binding and molecular docking of the platinum complexes were studied, highlighting the effect of the different functional group in the Schiff base ligands on their properties. In general, introducing the electron-withdrawing group nitro or acetyl in the 2-pyridyl Schiff base ligands, results in a red-shift in the absorption maxima of the platinum complex. In addition, the enhancement in the antimicrobial activities and the increase in the ct-DNA-binding affinity were also observed when the nitro or acetyl functional group is introduced to the Schiff base ligand in the platinum(II) complex.  相似文献   

14.
Three isoxazole Schiff bases 2-((E)-(3,5-dimethylisoxazol-4-ylimino)methyl)-6-methoxyphenol (L1), 2-((E)-(3,5-dimethylisoxazol-4-ylimino)methyl)-4,6-diiodophenol (L2), 2-((E)-(3,5-dimethylisoxazol-4-ylimino)methyl)-6-bromo-4-chlorophenol (L3), and their Cu(II) complexes [Cu(L1)2] (1), [Cu(L2)2] (2) and [Cu(L3)2] (3) were synthesized. All the complexes have been characterized by elemental analysis, FT-IR, ESI mass, UV-Visible, ESR, TGA, magnetic moments, and single-crystal X-ray diffraction analysis. Based on analytical data, a square planar geometry is assigned to the Cu(II) complexes with N2O2 donors from the Schiff base ligands. The single-crystal X-ray diffraction measurements of 1 and 2 confirmed the square planar geometry. DNA binding studies from electronic absorption titrations, viscosity measurements, and fluorescence quenching studies indicated an intercalation mode of binding of Cu(II) complexes with CT-DNA. DNA cleavage experiments of Cu(II) complexes with supercoiled plasmid pBR322 DNA have also been investigated by agarose gel electrophoresis in the presence of H2O2 (oxidative cleavage) and UV light (photolytic cleavage). The synthesized compounds were screened for antibacterial (Escherichia coli, Pseudomonas putida, Klebsiella pneumoniae, Bacillus subtillis and Staphylococcus aureus) and antifungal (Candida albicans and Aspergillus niger) activities by the paper disk method. The Cu(II) complexes showed better activity than corresponding Schiff bases.  相似文献   

15.
A new series of mercaptopyrimidine Ru(III) complexes were synthesized and characterized using various spectral techniques like single‐crystal X‐ray diffraction, Fourier transform infrared and NMR spectroscopies, thermogravimetric analysis and energy‐dispersive X‐ray analysis. The complexes were evaluated for their pharmacological activities like in vitro antimicrobial, anticancer, antituberculosis and antioxidant activities. The DNA binding of the complexes was investigated by absorption and emission spectral measurements which indicated that the complexes bind to DNA via intercalation, with molecular docking studies validating the results. DNA cleavage studies of the complexes were carried out.  相似文献   

16.
A new siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane (1), was obtained by a two-step procedure and used to prepare a series of Schiff bases (25), by reaction with different carbonylic compounds: salicylaldehyde, 3,5-dibromosalicylaldehyde, 5-chlorosalicylaldehyde and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. All compounds, separated in crystalline form, were characterised by spectral (FTIR, UV–vis and NMR) analysis as well as by single-crystal X-ray diffraction. In these structures, different packing motifs occur depending on the different association degree determined by intra- and intermolecular π–π stacking interactions. Antimicrobial activity of the compounds was evaluated against three fungi and two bacteria, where the Schiff bases derived from salicylaldehyde and in special 5-chlorosalicylaldehyde showed remarkable activity.  相似文献   

17.
A series of novel thiazole Schiff base derivatives containing benzo[d][1,3]dioxole moiety was designed, synthesized and screened for their fungicidal activities. The preliminary results demonstrated that compounds 6p, 6q and 6r possessed potent activities against Phytophthora infestans, Pyricularia oryzae and Septoria tritici in vitro. Compounds 6d and 6r exhibited remarkable activities against Botrytis cinerea(whole plant) and Phytophthora infestans(leaf disk) respectively in vivo, which were identified as the most promising candidates for further study and could be used as possible lead compounds for developing new fungicides.  相似文献   

18.
We synthesized a tridentate Schiff base ligand, 6‐(((2‐hydroxyphenyl)amino)methylene)‐2‐methoxycyclohexa‐2,4‐dienone [H2L], as well as its Mo(VI) complex [MoO2(L)(DMSO)], and then characterized them completely using elemental analysis, FT‐IR, UV–Vis and 1HNMR spectroscopy techniques. X‐ray single crystal diffraction method was used for the determination of the structure of the synthesized ligand and complex. All other spectroscopic techniques performed, confirmed that [MoO2(L)(DMSO)]had an octahedral geometry around the Mo(VI) central ion coordinated by the donor atoms of the deprotonated ligand, two oxido groups and one oxygen atom of DMSO molecule. Hybrid functional B3LYP with DGDZVP as basis set was applied for DFT calculations of the compounds in their ground state. The MEP, Mulliken, HOMO‐LUMO energy gap and thermodynamic properties of the compounds were also theoretically predicted. In‐vitro antimicrobial studies on the synthesized compounds indicated the great antibacterial activities of the Mo(VI) complex against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus bacteria.  相似文献   

19.
An efficient method for the synthesis of some difunctionalized copillar[5]arene Schiff bases from condensation of salicylaldehyde and its 5-chloro, 5-bromo, 3,5-di(t-butyl) substituted derivatives with corresponding diamino-functionalized copillar[5]arene, which were prepared by Gabriel reaction according to the reported method. Single-crystals of six copillar[5]arenes were determined by X-ray diffraction. An ORTEP of compounds showed that the two chains units of Schiff base exist in the outside of the cavity of pillar[5]arene. Furthermore, the complexing ability of these Schiff bases to transition metal ions were investigated by UV and fluorescence spectroscopy.  相似文献   

20.
N,N′-bis(salicylidene)thiosemicarbazide Schiff base has been synthesized by the reaction of thiosemicarbazide with salicylaldehyde and then reacted with formaldehyde to generate phenolic groups, resulting in the formation of Schiff-base monomeric ligand. It was further incorporated with transition metals, Mn+2, Co+2, Ni+2, Cu+2, and Zn+2, to form Schiff-base metal complex, which was then polymerized with toluene 2,4-diisocyanate to form metal-chelated polyurethanes. Monomeric ligand, its metal complexes, and its metal polychelates were characterized and compared by elemental analysis, FT-IR, 1H NMR, thermal, and biocidal activities to evaluate the enhancement in physical and chemical properties on coordination with metal and on polymerization. SEM images of ligand and polymer metal complexes showed changes in surface morphology, while electronic spectra of polymer metal complexes were used to predict the geometry. Antimicrobial activities were determined by using agar-diffusion method with Staphylococcus aureus, Escherichia coli, Bacillus subtilis (bacteria), Aspergillus niger, Candida albicans, and Aspergillus flavus (yeast). The polymeric ligand had varied antibacterial and antifungal activities, enhanced after chelation and polymerization. Comparative results show that coordination of metal to the ligand enhances its physical and chemical properties which were meliorated on polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号