首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three novel fully substituted urea derivative cyclotriphosphazene compounds 5–7 were synthesized by alkyne-azide 1,3-dipolar cycloaddition reaction of propargyl substituted ureas 2–4 with hexaazide substituted cyclotriphosphazene 1 in the presence of Cu(I) catalyst. All compounds were characterized with spectroscopic techniques such as FT-IR, 1H, 13C, and 31P nuclear magnetic resonance and mass spectroscopy. Also, the usefulness of compounds 5–7 as anion carriers was investigated by 1H NMR spectroscopy. For this purpose, 1H NMR spectra of compounds 5–7 were recorded in the presence of tetrabutylammonium fluoride in DMSO-d6. It was determined, that the urea protons in the compounds interact with fluoride.  相似文献   

2.
E. il  M. Arslan  A.O. Grgülü 《Polyhedron》2006,25(18):3526-3532
Two oxime-cyclophosphazenes were prepared from hexakis(4-formylphenoxy)cyclotriphosphazene (2) and hexakis(4-acetylphenoxy)cyclotriphosphazene (7). The reactions of these oximes with benzyl chloride, benzenesulfanoyl chloride, benzoyl chloride, 4-methoxybenzoyl chloride and 2-chlorobenzoyl chloride were studied. Hexa and pentasubstituted compounds were obtained from the reaction of hexakis(4-[(hydroxyimino)methyl]phenoxy)cyclotriphosphazene (3) with benzyl chloride (4) and benzoyl chloride, respectively. However, the oxime groups on 3 rearranged to nitrile (5) in the reaction of 3 with benzenesulfanoyl chloride and 1-napthalenesulfanoyl chloride. Hexasubstituted compounds were also obtained from the reactions of hexakis(4-[(1)-N-hydroxyethaneimidoyl]phenoxy)cyclotriphosphazene (8) with benzoyl chloride (10), 4-methoxybenzoyl chloride (11) and 2-chlorobenzoyl chloride (12). A trisubstituted compound was obtained from the reaction of 8 with benzyl chloride (9). All the products were generally obtained in high yields. Pure and defined products could not be obtained from the reaction of 3 with 4-methoxybenzoyl chloride and 2-chlorobenzoyl chloride. The structures of the compounds were defined by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy.  相似文献   

3.
We have synthesized four examples of a cyclotriphosphazene ring appended with six boron-dipyrromethene dyes N(3)P(3)(BODIPY)(6) by adopting two different methods. In method I, 1 equiv of N(3)P(3)Cl(6) was treated with 6 equiv of meso-(o- or m- or p-hydroxyphenyl)boron-dipyrromethene in tetrahydrofuran (THF) in the presence of cesium carbonate. This afforded N(3)P(3)(BODIPY)(6) in yields ranging from 80 to 90%. In method II, we first prepared hexakis(p-formylphenoxy)cyclotriphosphazene N(3)P(3)(CHO)(6) by treating 1 equiv of N(3)P(3)Cl(6) with 6 equiv of 4-hydroxybenzaldehyde in the presence of cesium carbonate in THF. In the second step, N(3)P(3)(CHO)(6) was condensed with excess of pyrrole in the presence of catalytic amount of trifluoroacetic acid (TFA) in CH(2)Cl(2) at room temperature and afforded hexakis(p-phenoxy dipyrromethane)cyclotriphosphazene. In the last step, the hexakis(p-phenoxy dipyrromethane)cyclotriphosphazene was first oxidized with 6 equiv of DDQ in CH(2)Cl(2) at room temperature for 1 h followed by neutralization with triethylamine and further reaction with excess BF(3)·Et(2)O afforded the target N(3)P(3)(BODIPY)(6) in 16% yield. The route II was used only for the synthesis of one target compound whereas the route I was used for the synthesis of all four target compounds. The four compounds were characterized by mass, NMR, absorption, electrochemical, and fluorescence techniques. The crystal structure solved for one of the compounds revealed that the P(3)N(3) ring is slightly puckered and the six substituents were not interacting with each other and attained pseudo-axial and pseudo-equatorial positions. The photophysical studies in five different solvents indicated that the compounds exhibit large Stokes' shifts unlike reference monomeric BODIPYs indicating that the compounds are promising for fluorescence bioassays. The quantum yields and lifetimes of compounds 1-4 depends on the type of BODIPY unit attached to the cyclotriphosphazene ring.  相似文献   

4.
The synthesis and structures of a series of new water-soluble phosphine ligands based on 1,3,5-triaza-7-phosphaadamantane (PTA) are described. Insertion of aldehydes or ketones into the C-Li bond of 1,3,5-triaza-7-phosphaadamantan-6-yllithium (PTA-Li) resulted in the formation of a series of slightly water-soluble beta-phosphino alcohols (PTA-CRR'OH, R = C6H5, C(6)H(4)OCH(3), ferrocenyl; R' = H, C(6)H(5), C(6)H(4)OCH(3)) derived from the heterocyclic phosphine PTA. Insertion of CO(2) yielded the highly water-soluble carboxylate PTA-CO(2)Li, S(2)5 degrees approximately 800 g/L. The compounds have been fully characterized in the solid state by X-ray crystallography and in solution by multinuclear NMR spectroscopy. The addition of PTA-Li to symmetric ketones results in a racemic mixture of PTA-CR(2)OH ligands with a single resonance in the (31)P{(1)H} NMR spectrum between -95 and -97 ppm. The addition of PTA-Li to aldehydes results in a mixture of diasteromeric compounds, PTA-CHROH, with two (31)P{(1)H} NMR resonances between -100 and -106 ppm. Three (eta(6)-arene)RuCl(2)(PTA-CRR'OH) complexes of these ligands were synthesized and characterized, with the ligands binding in a kappa1 coordination mode. All the ligands and ruthenium complexes are slightly soluble in water with S25 degrees = 3.9-11.1 g/L for the PTA-CRR'OH ligands and S(25) degrees = 3.3-14.1 g/L for the (eta(6)-arene)RuCl(2)(PTA-CRR'OH) complexes.  相似文献   

5.
Reactions of platinum(II) and platinum(IV) nitrile complexes with polydentate ligands, such as pentaphenoxy(2-pyridylmethylamino)cyclotriphosphazene, pentaphenoxy(3-pyridylmethylamino)cyclotriphosphazene, and pentaphenoxy(2-pyridylethylamino)cyclotriphosphazene, were studied. Platinum(IV) is reduced to platinum(II) upon complex formation; the pyridine and alkylamine nitrogen atoms coordinate to platinum(II) to form chelate rings. The compounds obtained were characterized by 1H and 31P NMR and IR spectroscopy, FAB mass spectrometry, and other methods.  相似文献   

6.
Two novel cyclophosphazenes containing oxime groups were prepared from the hexakis(4‐formylphenoxy)cyclotriphosphazene ( 2 ) and hexakis‐(4‐acetylphenoxy)cyclotriphosphazene ( 7 ). The reactions of these oximes with acetyl chloride, chloroacetyl chloride, methyl iodide, propyl chloride, mono‐ chloroacetone, and 1,4‐dichlorobutane were studied. Hexasubstituted compounds were obtained from the reactions of hexakis(4‐[(hydroxyimino)methyl]phenoxy)cyclotriphosphazene ( 3 ) with acetyl chloride ( 4 ) and chloroacetyl chloride ( 5 ); however, tetrasubstituted product was obtained from methyl iodide ( 6 ). Tetra‐ and trisubstituted products were obtained from the reactions of hexakis(4‐[(1)‐N‐hydroxyethaneimidoyl]phenoxy)cyclotriphosphazene ( 8 ) with acetyl chloride ( 9 ) and chloroacetyl chloride ( 10 ), respectively. All products were obtained in high yields. Pure and defined product could not be obtained from the reaction of 8 with methyl iodide, and could not be also obtained from the reactions of 3 and 8 with propyl chloride, monochloroacetone, and 1,4‐dichlorobuthane. The structures of the compounds were defined by elemental analysis, IR, 1H, 13C, and 31P NMR spectroscopy. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:112–117, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20176  相似文献   

7.
Three new 2-component unsubstituted ( 4P ), diiodo- ( 5P ), and dibromo- ( 6P ) distyryl-BODIPY-bridged cyclotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems were characterized by 1 H, 13 C, and 31 P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs (4–6) and BODIPY-cyclotriphosphazene dyads ( 4P – 6P ) were studied by UV-Vis absorption and fluorescence emission spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes ( 5P and 6P ) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.  相似文献   

8.
Reactions of (H 2azole) 2[OsCl 6], where Hazole = pyrazole, Hpz, ( 1), indazole, Hind, ( 2), imidazole, Him, ( 3) and benzimidazole, Hbzim, ( 4) with the corresponding azole heterocycle in 1:4 molar ratio in boiling isoamyl alcohol or hexanol-1 afforded novel water-soluble osmium(III) complexes of the type trans-[OsCl 2(Hazole) 4]Cl, where Hazole = Hpz ( 5a), Hind ( 6a), Him ( 7a), and Hbzim ( 9a) in 50-70% ( 5a, 7a, 9a) and 5% ( 6a) yields. The synthesis of 7a was accompanied by a concurrent reaction which led to minor formation (<4%) of cis-[OsCl 2(Him) 4]Cl ( 8). The complexes were characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. 5a, 7a, and 9a were found to possess remarkable antiproliferative activity in vitro against A549 (non-small cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma) cells, which was compared with that of related ruthenium compounds trans-[RuCl 2(Hazole) 4]Cl, where Hazole = Hpz (5b), Hind (6b), Him (7b), and Hbzim (9b).  相似文献   

9.
The newly synthesized cyclotriphosphazene cored coumarin chemosensors 5, 6, and 7 were successfully characterized by 1 H NMR, 31 P NMR, and MALDI-TOF mass spectrometry. Additionally, the photophysical and metal sensing properties of the targeted compounds were determined by fluorescence spectroscopy in the presence of various metals (Li + , Na + , K + , Cs + , Mg 2+ , Ca 2+ , Ba 2+ , Cr 3+ , Mn 2+ , Fe 3+ , Co 2+ , Al 3+ , Hg + , Cu 2+ , Zn 2+ , Ag + , and Cd 2+ ) . The fluorescence titration results showed that compounds 5, 6, and 7 could be employed as fluorescent chemosensors for Fe 3+ ions with high sensitivity. The complex stoichiometry between final cyclotriphosphazene chemosensors and Fe 3+ ions was also determined by Job’s plots.  相似文献   

10.
Hexachlorocylotriphosphazene (1) was reacted with 4-hydroxy-3-methoxybenzaldehyde to give hexakis[(4-formyl-2-methoxy)phenoxy]cyclotriphosphazene (2). Hexakis[(4-(hydroxyimino)2-methoxy)phenoxy]cyclotriphosphazene (3) was synthesized by reaction of 2 with hydroxlamine hydrochloride in pyridine. Compound 3 was reacted with benzyl chloride, acetyl chloride, allyl bromide, benzoyl chloride, propanoyl chloride, 4-methoxybenzoyl chloride, 2-chlorobenzoyl chloride, chloroacetyl chloride, methyl iodide, and thiophene-2-carbonyl chloride. From these reactions, full or partially substituted compounds were obtained, usually in high yields. Pure or defined products could not be obtained from reaction of 3 with methacryloyl chloride and O-acetylsalicyloyl chloride. The structures of the compounds were determined by elemental analysis, and IR, 1H, 13C, and 31P NMR spectroscopy. The synthesized compounds were screened for in-vitro antimicrobial activity against two Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis), two gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), and fungal strains (Aspergillus niger, and Candida albicans) by the agar well diffusion method. Few compounds had significant activity against both Gram-positive and Gram-negative bacteria. None of the compounds had antifungal activity except compounds 7 and 9, which had moderate activity.  相似文献   

11.
Abstract

Hexa(4-bromo-2-formyl-phenoxy)cyclotriphosphazene (2) and hexa(4-chloro-2- formyl-phenoxy)cyclotriphosphazene (3) were obtained from the reactions of hexachloro- cyclotriphosphazene (1) with 5-bromosalicylaldehyde and 5-chlorosalicylaldehyde in the presence of (C2H5)3N and K2CO3 at room temperature, respectively. The new two organocyclotriphosphazenes bearing formyl groups were reacted with 4-cyano aniline, 2-phenyl aniline, 4-aceto aniline, 5-chloro-2-hydroxy aniline, 2-hydroxy aniline, 4-hydroxy aniline, 2-(4-morpholino)ethyl amine, 4-carboxy aniline, 4-carbomoyl aniline, 2-mercapto aniline, and 5-amino isoquonoline to prepare cyclotriphosphazene derivatives containing a Schiff base at room temperature. However, fully phenoxy-substituted cyclotriphosphazenes containing a Schiff base were isolated from the reactions of the compound 2 and 3 with 5-chloro-2-hydroxy aniline, 2-hydroxy aniline, 4-hydroxy aniline, and 2-(4-morpholino)ethyl amine. The structures of the synthesized compounds were characterized by elemental analysis, IR, and NMR (1H, 13C, 31P) spectroscopy. According to the results of the analysis, all synthesized compounds were found to be fully substituted organocyclotriphosphazenes, such as hexa[4-bromo-2-(5-chloro-2-hydroxy-pheyliminomethyl)phenoxy]cyclotriphosphaze (2a). All cyclotriphosphazene derivatives synthesized gave fluorescence emission peaks in range between 300 nm and 410 nm.  相似文献   

12.
Through the strategy of water soluble N-heterocyclic carbene (NHC) ligand, Pd-catalyzed reactions were developed in aqueous media. Therefore, four new piperidoimidazolinium salts ( 1a-d ) consisting of sulfonate ( a ), esther ( b , c ) and carboxylic acid ( d ) functionalities and their water-soluble Pd-NHC complexes ( 2a - d ) were synthesized. The new compounds were characterized by elemental analysis, FTIR, TGA, UV–vis and NMR spectroscopy. The catalytic activities of water soluble Pd-NHC complexes ( 2a - d ) were investigated using the Suzuki-Miyaura (S-M) reaction and the reduction of nitroarenes. We found that the water-soluble polar or ionic groups on piperidoimidazolin-2-ylidine had an effect on the catalytic activity. The water-soluble catalyst can be recycled efficiently and reused six times with only a very slight loss of catalytic activity.  相似文献   

13.
The use of chlorins as photosensitizers or fluorophores in a range of biological applications requires facile provisions for imparting high water solubility. Two free base chlorins have been prepared wherein each chlorin bears a geminal dimethyl group in the reduced ring and a water-solubilizing unit at the chlorin 10-position. In one design (FbC1-PO3H2), the water-solubilizing unit is a 1,5-diphosphonopent-3-yl ("swallowtail") unit, which has previously been used to good effect with porphyrins. In the other design (FbC2-PO3H2), the water-solubilizing unit is a 2,6-bis(phosphonomethoxy)phenyl unit. Two complementary routes were developed for preparing FbC2-PO3H2 that entail introduction of the protected phosphonate moieties either in the Eastern-half precursor to the chlorin or by derivatization of an intact chlorin. Water-solubilization is achieved in the last step of each synthesis upon removal of the phosphonate protecting groups. The chlorins FbC1-PO3H2 and FbC2-PO3H2 are highly water-soluble (>10 mM) as shown by 1H NMR spectroscopy (D2O) and UV-vis absorption spectroscopy. The photophysical properties of the water-soluble chlorins in phosphate-buffered saline solution (pH 7.4) at room temperature were investigated using static and time-resolved absorption and fluorescence spectroscopic techniques. Each chlorin exhibits dominant absorption bands in the blue and the red region (lambda = 398, 626 nm), a modest fluorescence yield (Phi f approximately 0.11), a long singlet excited-state lifetime (tau = 7.5 ns), and a high yield of intersystem crossing to give the triplet state (Phi isc = 0.9). The properties of the water-soluble chlorins in aqueous media are comparable to those of hydrophobic chlorins in toluene. The high aqueous solubility combined with the attractive photophysical properties make these compounds suitable for a wide range of biomedical applications.  相似文献   

14.
Three water-soluble arsenic compounds were isolated from the green seaweed Codium fragile. These compounds were identified as 1-glycerophosphoryl-2-hydroxy-3-[5′-deoxy-5′-(dimethylarsinoyl)-β-ribofuranosyloxy]propane (1a), 1′ -(1,2-dihydroxypropyl)-5′ -deoxy-5′ -(dimethylarsinoyl)-β-ribofuranoside (1b), and dimethylarsinic acid ((CH3)2AsOOH). The structures of these compounds were ascertained by 1H NMR spectroscopy. Compounds 1a and 1b accounted for 60 % and dimethylarsinic acid for 5% of the water-soluble arsenic.  相似文献   

15.
A multi-pyrazolyl cyclotriphosphazene containing polymerizable group N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)) (2) has been prepared from the corresponding chloro derivative N(3)P(3)Cl(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)) (1). The X-ray structures of 1 and 2 have been determined. Compound 2 undergoes ready metalation with CuCl(2) to afford N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)).CuCl(2) (3). Model compound N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-CHO).CuCl(2) (6) has been prepared and characterized by spectroscopy and X-ray crystallography. In this compound, the coordination around copper is distorted trigonal bipyramidal, and the cyclotriphosphazene coordinates in a non-gem N(3) mode. Compound 2 has been copolymerized with divinylbenzene to afford cross-linked multisite coordinating polymer CPPL which is readily metalated with CuCl(2) to afford copper-containing polymer CPPL-Cu. The coordination environment around copper in CPPL-Cu has been evaluated by obtaining its EPR, optical, and IR spectra and comparing them with those of model compounds 3 and 6. The utility of CPPL-Cu as a heterogeneous catalyst has been demonstrated in the phosphate ester hydrolysis involving three model phosphate esters: p-nitrophenyl phosphate (pNPP), bis(p-nitrophenyl) phosphate (bNPP), and 2-(hydroxypropyl)-p-nitrophenyl phosphate (hNPP). In all of these reactions, a significant rate enhancement of ester hydrolysis is observed. Detailed kinetic analyses to evaluate Michaelis-Menten parameters have also been carried out along with experiments to elucidate the effect of pH, solvent, and temperature on the rate of hydrolysis. Recycling experiments on the hydrolysis of pNPP with CPPL-Cu shows that it can be recycled several times over without affecting the rates.  相似文献   

16.
Hexakis(2‐formylphenoxy)cyclotri‐phosphazene ( 2 ) was obtained from the reaction of hexachlorocylotriphosphazene ( 1 ) with 2‐hydroxy‐benzaldehyde. Hexakis(2‐[(hydroxyimino)methyl]‐phenoxy)cyclotriphosphazene (3) was synthesized from the reaction of 2 with hydroxlaminehydrochloride in pyridine. Hexasubstituted compounds 4, 5, 6, 8, 9 , and 10 were obtained from the reactions of 3 with methyl iodide, ethyl bromide, allyl bromide, propanoyl chloride, benzoyl chloride, and 4‐methoxybenzoyl chloride, respectively. Disubstituted product 7 was obtained from the reaction of 3 with chloroacetyl chloride. Pure and defined products could not be obtained from the reaction of 3 with acetyl chloride, benzyl chloride, and 2‐chlorobenzoyl chloride. The compounds were characterized by elemental analysis and IR, 1H, 13C, and 31P NMR spectroscopy. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:791–797, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20350  相似文献   

17.
During these last years, cyclodextrins have greatly contributed to the development of catalytic processes in water. These cyclic oligosaccharides composed of 6(α), 7(β) or 8(γ) glucopyranose units improve the mass transfer in aqueous-organic two-phase systems and are useful compounds to design new catalysts. Thus, chemically modified cyclodextrins can be used to: (1) significantly increase the rate and selectivity of reactions catalyzed by water-soluble organometallic complexes; (2) design new water-soluble ligands for aqueous organometallic catalysis; (3) stabilize catalytically active noble metal nanoparticles in water; (4) facilitate reactions catalyzed by supported metals or metallic powder in water.  相似文献   

18.
Triple diamino-bridged cyclotriphosphazene (1) was reacted in a 1:8 stoichiometry with the sodium derivatives of long-chain diols [1-octanol, 1-decanol, 1-dodecanol, 1-hexadecanol] tetrahydrofuran (THF) at room temperature to form hexa-substituted cyclotriphosphazene derivatives (2, 3, 4 and 5, respectively), whose mesomorphic behaviours were investigated for their possible applications as liquid crystals. The cylindrical-type cyclotriphosphazene derivatives (25) were characterised by mass and elemental analyses and by Fourier transform infrared spectroscopy (FT-IR), 1H and 31P {1H} NMR spectroscopies. The thermal and mesomorphic properties were investigated by differential scanning calorimetry and by polarising optical microscopy, respectively. It was found that liquid crystal materials could be obtained from compounds 3 and 4 with alkoxy chains rather than using aromatic ring(s) as mesogens as published previously.  相似文献   

19.
Cyamelurates are salts of cyameluric acid, a derivative of tri-s-triazine (1,3,4,6,7,9-hexaazacyclo[3.3.3]azine or s-heptazine). These compounds are thermally very stable and possess interesting structural and optical properties. Only very few tri-s-triazine derivatives have been reported in the literature. The water-soluble alkali cyamelurates were extensively characterized using NMR, FTIR, Raman, UV, luminescence spectroscopy and elemental analysis. In addition, the single crystal X-ray structure analyses of the four hydrates of lithium, sodium, potassium and rubidium cyamelurates (Li(3)[C(6)N(7)O(3)].6H(2)O; Na(3)[C(6)N(7)O(3)].4.5H(2)O; K(3)[C(6)N(7)O(3)].3H(2)O; Rb(3)[C(6)N(7)O(3)].3H(2)O) are presented. Thermogravimetric analysis shows that the dehydrated salts start to decompose at temperatures above 500 degrees C. The thermal stability does not depend on the cations which is in contrast to the analogous s-triazine salts, i.e. the alkali cyanurates M(3)[C(3)N(3)O(3)]. The photoluminescence spectra indicate a very strong solid state UV-emission with maxima between 280 and 400 nm.  相似文献   

20.
The interaction of platinum(II) nitrile complexes with polydentate ligands, pentaphenoxy(2-pyridylmethylamino)cyclotriphosphazene (L1), pentaphenoxy(3-pyridylmethylamino)cyclotriphosphazene (L2), pentaphenoxy[2-(2-pyridyl)ethylamino]cyclotriphosphazene (L3), and pentaphenoxy(2-pyridylmethoxy)-cyclotriphosphazene (L4), was studied. The synthesized complexes were characterized by single-crystal X-ray diffraction, 1H and 31P NMR spectroscopy, IR spectroscopy, FAB mass spectrometry, and other methods. In complexation of phosphazenes L1-L3 with Pt(II) ions, nitrogen atoms of the pyridine ring and alkylamine fragment participate in the coordination to form chelate rings. In the complex with L4, the substituted phosphazene is coordinated via nitrogen atoms of the pyridyl group and cyclotriphosphazene ring to form a sevenmembered ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号