首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Zinc borate (2ZnO·3B2O3·3.5H2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B2O3·3.5H2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H3BO3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.  相似文献   

2.
The mechanism of cooperative action of commercial fire retardants is interpreted as resulting from specific chemical reaction and phase changes. This investigation focuses on the thermally initiated interactions between two forms of commercially available fire retardant compounds. The fire performance of a polyolefin with a metal hydroxide fire retardant, magnesium hydroxide, can significantly reduce the heat release rate through absorption of heat during conversion to its metal oxide. Formation of water, followed by vaporisation, decreases heat and dilutes volatiles from polymer degradation. The second form of fire retardant compounds are zinc borates (2ZnO·3B2O3·3H2O and 4ZnO·B2O3·H2O), that undergo dehydration with increasing temperature. Differential thermal analysis and wide-angle X-ray spectroscopy indicated that various structural changes occurred during heating. Endothermic transitions were observed for all components, while zinc borate (2ZnO·3B2O3·3H2O) showed an exothermic crystallisation transition at relatively high temperature. The exotherm was modified by the development of a new crystalline phase, magnesium orthoborate (3MgO·B2O3) that formed on reaction with magnesium oxide (MgO) at temperatures greater than 500 °C. Formation of crystalline zinc oxide (ZnO) was also detected. From zinc borate (4ZnO·B2O3·H2O), ZnO was primarily formed. No new crystalline phases were observed in the presence of MgO over the temperature range investigated.  相似文献   

3.
Abstract

A triazine-based macromolecular hybrid charring agent containing zinc borate (MCA-K-ZB) was synthesized and combined with ammonium polyphosphate (APP) to improve the flame retardancy of polypropylene (PP). The flame retardancy and thermal properties of PP composites were investigated using limited oxygen index, vertical burning test, and thermogravimetric analysis. The results showed APP/MCA-K-ZB can improve the flame retardancy of PP compared with APP/MCA-K/ZB. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The SEM result shows that MCA-K-ZB can improve the compactness and continuity of char residue compared with MCA-K/ZB, therefore improving the flame retardancy of PP composites.  相似文献   

4.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   

5.
Four complexes, [Cu4L2(OCH3)2(CH3OH)2]·2H2O (1), [Zn2L2Cl4]·2H2O·2CH3OH (2), [Hg2L2Br4]·4CH3OH (3), and {[CdL2Cl2]·4H2O·4CH3OH}n (4), have been synthesized and characterized from a bis(pyridylhydrazone) ligand (L) with copper(II), zinc(II), mercury(II) or cadmium(II), respectively. Complex 1 exists as a centrosymmetric tetranuclear dimer with L as deprotonated tridentate ligand. Complexes 2 and 3 exist as centrosymmetric metallamacrocycles with L as bidentate ligand. Complex 4 exists as a 1D looped-chain coordination polymer. The thermal stabilities and vapor adsorption properties of the four complexes were investigated as well.  相似文献   

6.
Four new 2–3D materials were designed and synthesized by hydrothermal methods, namely, {[(L1·Cu·2H2O) (4,4-bipy)0.5] (β-Mo8O26)0.5·H2O} (1), {[(L1·Cu)2·(4,4-bipy)] (Mo5O16)} (2), {Co(L1)2}n (3), and {[(L1)2][β-Mo8O26]0.5·5H2O} (4). [L1=5-(4-aminopyridine) isophthalic acid]. The degradation of ciprofloxacin (CIP) in water by compounds 1–4 was studied under visible light. The experimental results show that compounds 1–4 have obvious photocatalytic degradation effect on CIP. In addition, for compound 1, the effects of temperature, pH, and adsorbent dosage on photocatalytic performance were also investigated. The stability of compound 1 was observed by a cycle experiment, indicating that there was no significant change after three cycles of CIP degradation.  相似文献   

7.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

8.
Flame retardants from vanillin when utilized together with ammonium polyphosphate (APP) yield excellent synergistic flame retardancy toward epoxy resins. Bisphenol A epoxy resins have been widely used due to their excellent mechanical properties, chemical resistance, electrical properties, adhesion, etc., while they are flammable. Environment‐friendly and bio‐based flame retardants have captured increasing attention due to their ecological necessity. In this paper, 3 bio‐based flame retardants were synthesized from abundant and more importantly renewable vanillin, and their chemical structures were determined by 1H NMR and 13C NMR. They were used together with APP (an environment‐friendly commercial flame retardant) to improve the fire resistance of bisphenol A epoxy resin. With the addition APP content of 15 phr, the modified bisphenol A epoxy resin could reach UL‐94V0 rating during vertical burning test and limit oxygen index values of above 35%, but reducing APP content to 10 phr, the flame retardancy became very poor. With the total addition content of 10 phr, the epoxy resins modified by 7 to 9 phr APP and 1 to 3 phr bio‐based flame retardants with epoxy groups or more benzene rings showed excellent flame retardancy with UL‐94V0 rating and limit oxygen index values of around 29%. The Tgs of the epoxy resins could be remained or even increased after introducing bio‐based flame retardants, as the control; those of APP alone‐modified epoxy resins compromised a lot. The green synergistic flame‐retardant systems have a great potential to be used in high‐performance materials.  相似文献   

9.
An ionic porous aromatic framework is developed as a self-degraded template to synthesize the magnetic heterostructure of γ-Fe2O3/WO3·0.5H2O. The Fe3O4 polyhedron was obtained with the two-phase method first and then reacted with sodium tungstate to form the γ-Fe2O3/WO3·0.5H2O hybrid nanostructure. Under the induction effect of the ionic porous network, the Fe3O4 phase transformed to the γ-Fe2O3 state and complexed with WO3·0.5H2O to form the n-n heterostructure with the n-type WO3·0.5H2O on the surface of n-type γ-Fe2O3. Based on a UV-Visible analysis, the magnetic photocatalyst was shown to have a suitable band gap for the catalytic degradation of organic pollutants. Under irradiation, the resulting γ-Fe2O3/WO3·0.5H2O sample exhibited a removal efficiency of 95% for RhB in 100 min. The charge transfer mechanism was also studied. After the degradation process, the dispersed powder can be easily separated from the suspension by applying an external magnetic field. The catalytic activity displayed no significant decrease after five recycles. The results present new insights for preparing a hybrid nanostructure photocatalyst and its potential application in harmful pollutant degradation.  相似文献   

10.
Metal-organic frameworks (MOFs) have presented potential for detection of specific species and catalytic application due to their diverse framework structures and functionalities. In this work, two novel pillar-layered MOFs [Cd6(DPA)2(NTB)4(H2O)4]n·n(DPA·5DMA·H2O) (1) and [Cu2(DPA)(OBA)2]n·n(2.5DMF·H2O) (2) [DPA = 2,5-di(pyridin-4-yl)aniline, H3NTB = 4,4′,4′′-nitrilotribenzoic acid, H2OBA = 4,4′-oxydibenzoic acid, DMA = N,N-dimethylacetamide, DMF = N,N-dimethylformamide] were successfully synthesized and structurally characterized. Both 1 and 2 have three-dimensional framework structures. The fluorescent property of 1 makes it possible for sensing specific amino acid such as L-glutamic acid (Glu) and L-aspartic acid (Asp). While MOF 2 was found to be suitable for photocatalytic degradation of Rhodamine B (RhB) in the presence of H2O2. The results imply that MOFs are versatile and metal centers are important in determining their properties.  相似文献   

11.
Novel mononuclear cymantrenecarboxylate complexes of transition metals, [Co(H2O)6](CymCO2)2·4H2O (Cym = (η5-C5H4)Mn(CO)3) (1), [Ni(H2O)6](CymCO2)2·4H2O (2), [Zn(H2O)6](CymCO2)2·4H2O (3), [Co(CymCO2)2(imz)2] (imz = imidazole, 4), [Co(CymCO2)2(bpy)2]·2PhMe (bpy = 2,2′-bipyridyl, 5), [Ni(CymCO2)(bpy)2(H2O)][CymCO2]·0.5MePh·2H2O (6), [Cu(CymCO2)2(imz)2] (7), and [Cu(CymCO2)2(bpy)(H2O)] (8), were obtained and characterized by single-crystal X-ray analysis. Complexes 1–3 are isostructural. Magnetism of the Co complexes 1, 4, and 5 was studied; it was shown that they exhibit the properties of field-induced single-molecule magnets with magnetization reversal barriers (ΔE/kB) of 44, 13, and 10 K, respectively. Thermal decomposition of complexes 1–8 was studied by means of DSC and TGA methods. The final products of thermolysis of 1–6 in air, according to powder XRD data, are the pure spinel phases MMn2O4; for the cases of copper complexes, the mixtures of CuMn2O4 and CuO were found in the products.  相似文献   

12.
Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.  相似文献   

13.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

14.
Under ambient conditions or 160 °C, two supramolecular isomers, namely [(H4PTTA)(H2O)2(DMF)] and [(H4PTTA)(H2O)3]··Guest (1-L and 1-H, H4PTTA = N-phenyl-N′-phenyl bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide tetra-carboxylic acid, Guest = DMF and H2O), were obtained through the reaction of H4PTTA in a mixture of H2O and dimethylformamide. The single crystal structures reveal the temperature-dependent supramolecular isomerism derived from the torsion of semi-rigid of H4PTTA. The 1-L prepared at room temperature is a hydrogen bond based achiral layer, while the hydrothermal synthesized 1-H is isomer resulted in an H-bond-based chiral tubes-packed supramolecular framework.  相似文献   

15.
A novel derivative of ibuprofen and salicylaldehyde N′-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl·2H2O, [Ni(L)2], [Co(L)2]·H2O, [Gd(L)2(H2O)2](NO3)·2H2O and [Sm(L)2(H2O)2](NO3)·2H2O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT Homo sapiens). The binding energies were −7.52, −9.41, −9.51, −8.09, −10.04, and −8.05 kcal/mol for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, which suggests the enhancement of anti-inflammatory behaviors compared with the binding energy of ibuprofen (−5.38 kcal/mol). The anti-inflammatory properties of the new compounds were assessed in vitro using the western blot analysis method and the enzyme-linked immunosorbent assay (ELISA), consistent with the outcomes obtained from docking. The half-maximal inhibitory concentration (IC50) values are 4.9, 1.7, 3.7, 5.6, 2.9, and 2.3 µM for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, showing that they are more effective inhibitors of COX2 than ibuprofen (IC50 = 31.4 µM). The brain or intestinal estimated permeation method (BOILED-Egg) showed that HL and its Co complex have high gastrointestinal absorption, while only the free ligand has high brain penetration. The binding constants of Co, Cu, and Gd complexes with DNA were recorded as 2.20 × 104, 2.27 × 106, and 4.46 × 103 M−1, respectively, indicating the intercalator behavior of interaction. The newly synthesized ibuprofen derivative and its metal complexes showed greater anti-inflammatory activity than ibuprofen.  相似文献   

16.
Three different boron containing materials, zinc borate (ZnB), borophosphate (BPO4), and boron and silicon containing oligomer (BSi), were used to improve the flame retardancy of melamine cyanurate (MC) in a polyamide‐6 (PA‐6) matrix. The combustion and thermal degradation characteristics were investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis‐Fourier transform infrared spectroscopy (TGA‐FTIR), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). All the three boron compounds showed no synergistic effect with MC, and only BPO4 at high loadings showed comparable LOI values by increasing the dripping rate. For ZnB and BSi glassy film and char formation decreases the dripping rate and sublimation of melamine and give rise to low LOI. According to TGA‐FTIR results, addition of boron compounds does not alter the gaseous product distribution of both MC and PA‐6. The addition of boron compounds affects flame retardancy through physical means. It was noted from the TGA data that boron compounds reduced the decomposition temperature of both MC and PA‐6, also affecting the flame retardancy negatively by premature degradation of MC at low temperatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this work spherical SiO2 nanoparticles were synthesized by sonochemical method using a new Schiff-base as a capping agent. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate in aqueous alcohol solution. The effect of different parameters such as molar concentration of Schiff-base ligands and ultrasonic irradiation on the morphology and size of the products was examined. The results demonstrated that applying the appropriate amount of Schiff-base could be effective in control of particle size. The influence of SiO2 nanostructures on the flame retardancy of the poly styrene, poly vinyl alcohol, cellulose acetate and ethyl cellulose was studied. In-situ and ex situ nanocomposites were investigated and results confirm that flame retardancy of in situ nanocomposites were better than ex situ samples. HO···Si–O–Si···OH barrier prevents reaching of flame, heat and oxygen to the polymeric nanocomposites.  相似文献   

18.
Eight mixed-ligand coordination networks, [Cd(2-aba)(NO3)(4-bphz)3/2]n·n(dmf) (1), [Cd(2-aba)2(4-bphz)]n·0.75n(dmf) (2), [Cd(seb)(4-bphz)]n·n(H2O) (3), [Cd(seb)(4-bpmhz)]n·n(H2O) (4), [Cd(hpa)(3-bphz)]n (5), [Zn(1,3-bdc)(3-bpmhz)]n·n(MeOH) (6), [Cd(1,3-bdc)(3-bpmhz)]n ·0.5n(H2O)·0.5n(EtOH) (7), and [Cd(NO3)2(3-bphz)(bpe)]n·n(3-bphz) (8) were obtained by interplay of cadmium nitrate tetrahydrate or zinc nitrate hexahydrate with 2-aminobenzenecarboxylic acid (H(2-aba)), three dicarboxylic acids, sebacic (decanedioic acid, H2seb), homophthalic (2-(carboxymethyl)benzoic acid, H2hpa), isophthalic (1,3-benzenedicarboxylic acid, H2(1,3-bdc)) acids, bis(4-pyridyl)ethane (bpe) and with four azine ligands, 1,2-bis(pyridin-4-ylmethylene)hydrazine (4-bphz), 1,2-bis(1-(pyridin-4-yl)ethylidene) hydrazine (4-bpmhz), 1,2-bis(pyridin-3-ylmethylene)hydrazine (3-bphz), and 1,2-bis(1-(pyridin-3-yl) ethylidene)hydrazine (3-bpmhz). Compounds 1 and 2 are 1D coordination polymers, while compounds 3–8 are 2D coordination polymers. All compounds were characterized by spectroscopic and X-ray diffraction methods of analysis. The solvent uptakes and stabilities to the guest evacuation were studied and compared for 1D and 2D coordination networks. The de-solvated forms revealed a significant increase of emission in comparison with the as-synthesized crystals.  相似文献   

19.
Flame retardance of ethylene-vinyl acetate copolymer (EVA) can be achieved using magnesium hydroxide (Mg(OH)2) incorporated in the polymeric matrix. The adduct of small amount of zinc borate as synergistic agent in the formulation increases the fire-proofing properties. Multinuclei solid-state NMR appears as a powerful means to characterise materials before and after combustion. We show that endothermic dehydration, water vapour evolved and formation of a glassy coating provide the flame retardancy of interest to the polymeric matrix.  相似文献   

20.
The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI 4CuII 1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号