首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates the linear and non-linear viscoelastic melt rheology of four grades of polycarbonate melt compounded with 3 wt% Nanocyl NC7000 multi-walled carbon nanotubes and of the matching matrix polymers. Amplitude sweeps reveal an earlier onset of non-linearity and a strain overshoot in the nanocomposites. Mastercurves are constructed from isothermal frequency sweeps using vertical and horizontal shifting. Although all nanocomposites exhibit a second plateau at ~105 Pa, the relaxation times estimated from the peak in loss tangent are not statistically different from those of pure melts estimated from cross-over frequencies: all relaxation timescales scale with molar mass in the same way, evidence that the relaxation of the polymer network is the dominant mechanism in both filled and unfilled materials. Non-linear rheology is also measured in large amplitude oscillatory shear. A comparison of the responses from frequency and amplitude sweep experiments reveals the importance of strain and temperature history on the response of such nanocomposites.  相似文献   

2.
In this study, an inverse method based on the Levenberg–Marquardt algorithm was evaluated in a numerical experiment to determine the large strain viscoelastic properties from the bubble inflation test. The properties were determined by iteratively matching the calculated bubble pressure–piston displacement data from finite element simulations to a single set of bubble pressure–piston displacement data. The strain-dependent behaviour was characterised by a two-parameter Mooney–Rivlin hyperelastic model, while the time-dependent behaviour was characterised by a three-parameter power law equation. Different initial guesses were used to evaluate the inverse method, and transformation functions were applied to constrain the intermediate guesses to be within bounds. It was found that estimates of the viscoelastic properties could be obtained reasonably using only one set of bubble pressure–piston displacement data. Estimates of the properties were likely affected by the limited time duration of the test, as the behaviour at shorter and particularly larger time scales was less accurately predicted.  相似文献   

3.
Dynamic viscoelastic measurements were combined with differential scanning calorimetry (DSC) and atomic force microscopy (AFM) analysis to investigate the rheology, phase structure, and morphology of poly(l-lactide) (PLLA), poly(ε-caprolactone) (PCL), poly(d,l-lactide) (PDLLA) with molar composition l-LA/d-LA?=?53:47, and poly(l-lactide-co-ε-caprolactone) (PLAcoCL) with molar composition l-LA/CL?=?67:33. After melt conformation, both copolymers PDLLA and PLAcoCL were found to be amorphous whereas PLLA and PCL presented partial crystallinity. The copolymers and PCL were considered as thermorheologically simple according to the rheological methods employed. Therefore, data from different temperatures could be overlapped by a simple horizontal shift (a T) on elastic modulus, G′, and loss modulus, G′, versus frequency graph, generating the corresponding master curves. Moreover, these master curves showed a dependency of G″≈ω and G′≈ω 2 at low frequencies, which is a characteristic of homogeneous melts. For the first time, fundamental viscoelastic parameters, such as entanglement modulus G N 0 and reptation time τ d, of a PLAcoCL copolymer were obtained and correlated to chain microstructure. PLLA, by contrast, was unexpectedly revealed as a thermorheologically complex liquid according to the failure observed in the superposition of the phase angle (δ) versus the complex modulus (G*); this result suggests that the narrow window for rheological measurements, chosen to be close to the melting point centered at 180 °C thus avoiding thermal degradation, was not sufficient to assure an homogeneous behavior of PLLA melts. The understanding of the melt rheology related to the chain microstructural aspects will help in the understanding of the complex phase structures present in medical devices.  相似文献   

4.
The problem of plane wave propagation through a plane composite layer of thickness h is considered. The composite consists of periodically repeated elastic and Kelvin–Voigt viscoelastic material layers, and all layers are either parallel or perpendicular to the incident wave front. Moreover, it is assumed that the thickness of each separate layer of the composite is much less than the acoustic wave length and the thickness h of the entire composite. We study the problem by using a homogenized model of the composite, which allows us to find the reflection and transmission factors and the variation in the sound intensity level as it propagates though the composite layer of thickness h.  相似文献   

5.
6.
7.
We detect the flow structures of a horizontal oil–water two-phase flow in a 20 mm inner-diameter pipe using 8-channels radial mini-conductance probes. In particular, we present an experimental flow pattern map that includes 218 flow conditions and compare this map to the flow pattern transitional boundaries predicted by published models. In addition, using the Adaptive Optimal Kernel Time–Frequency Representation, we analyze the conductance fluctuating signals and characterize the flow pattern in terms of the total energy and dominant frequency. Based on the liquid holdup measurements using the quickly closing valve technology combined with three parallel-wire capacitance probes, we investigate the slip effect between the oil and water phases under various flow conditions. The results show that the flow structures greatly affect the slippage, and the slip ratio is sensitive to flow pattern variations.  相似文献   

8.
Spherical Sb-doped SnO2 (ATO) nanoparticles were synthesized by the sol–gel route, employing SnCl4·5H2O and SbCl3 as precursors in an ethanol solution. The influences of the calcining temperature and calcining time on the crystallite size, crystallinity, lattice parameters, lattice distortion ratio and the resistivity of the ATO nanoparticles were synthetically investigated. The results suggested that the ATO nanoparticles were crystallized in a tetragonal cassiterite structure of SnO2 with a highly (1 1 0)-plane-preferred orientation. The calcining temperature had a dominating effect on the crystallite size, crystallinity, lattice distortion ratios and resistivity of the ATO. As the calcining temperature increased, the average crystallite size increased, the crystallinity was promoted accompanied by a decrease in the lattice distortion ratio and a corresponding decrease in the resistivity of the ATO. X-ray diffraction (XRD) and Fourier transform infrared spectrophotometer (FTIR) analysis revealed that Sb ions could not entirely supplant the Sn ions in the SnO2 lattice for a calcining time of less than 0.5 h, even at a calcining temperature of 1000 °C. The ATO nanoparticles calcined at 1000 °C for 3.0 h possessed the lowest resistivity of 10.18 Ω cm.  相似文献   

9.
A higher-order global–local theory is proposed based on the double-superposition concept for free vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates subjected to thermomechanical loads. In contrast to all theories proposed so far for analysis of the viscoelastic plates, the continuity conditions of the transverse shear and normal stresses at the layer interfaces and the nonzero traction conditions at the top and bottom surfaces of the sandwich plates are satisfied. Another novelty is that these conditions may be satisfied for viscoelastic plates with temperature-dependent material properties and nonlinear behaviors subjected to thermomechanical loads. Furthermore, transverse flexibility is also taken into account. Some dynamic buckling/wrinkling analyses of the viscoelastic plates are performed in the present paper, for the first time. Comparisons made between results of the paper and results reported by well-known references confirm the accuracy and the efficiency of the proposed theory and the relevant solution algorithm.  相似文献   

10.
11.
12.
13.
A brief review is stated on a hypernormalization method of autonomous differential equations in the vicinity of an equilibrium. The formalization is obtained from the method of cohomology spectral sequences. We skip the technical concepts such that it can be accessible for a broad audience. Three normal form styles are demonstrated by computing three different and known first-level normal forms of Bogdanov–Takens singularity.  相似文献   

14.
Luo  Shixian  Deng  Feiqi  Chen  Wu-Hua 《Nonlinear dynamics》2017,88(4):2899-2914
Nonlinear Dynamics - This paper investigates the problems of pointwise-in-space stabilization and synchronization of semilinear reaction–diffusion systems with Dirichlet boundary conditions...  相似文献   

15.
Starting from the elastic solution to a concentrated load on an elastic half space, this paper derives all the required Boussinesq–Cerruti equations for constant, linear and bilinear distributions of normal and tangential load over a triangle area, and presents a solution set to the equations. The surface displacement field in both the normal and tangential direction is obtained. The evaluations of Boussinesq–Cerruti equations are achieved by using various integration techniques. This paper also suggests a composition methodology to construct the solution due to more complicated loading profiles using the principle of superposition.  相似文献   

16.
Until now, the onset velocity of circulating fluidization in liquid–solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superficial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD–DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is influenced by the density and size of particles and weakly affected by riser height and diameter. A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.  相似文献   

17.
Adaptive infinite impulse response filters have received much attention due to its utilization in a wide range of real-world applications. The design of the IIR filters poses a typically nonlinear, non-differentiable and multimodal problem in the estimation of the coefficient parameters. The aim of the current study is the application of a novel hybrid optimization technique based on the combination of cellular particle swarm optimization and differential evolution called CPSO–DE for the optimal parameter estimation of IIR filters. DE is used as the evolution rule of the cellular part in CPSO to improve the performance of the original CPSO. Benchmark IIR systems commonly used in the specialized literature have been selected for tuning the parameters and demonstrating the effectiveness of the CPSO–DE method. The proposed CPSO–DE method is experimentally compared with two new design methods: the tissue-like membrane system (TMS), the hybrid particle swarm optimization and gravitational search algorithm (HPSO–GSA), the original CPSO-outer and CPSO-inner, and classical implementations of PSO, GSA and DE. Computational results and comparison of CPSO–DE with the other evolutionary and hybrid methods show satisfactory results. The hybridization of CPSO and DE demonstrates powerful estimation ability. In particular, to our knowledge, this hybridization has not yet been investigated for the IIR system identification.  相似文献   

18.
Minaeian  A.  Nili-Ahmadabadi  M.  Norouzi  M. 《Meccanica》2019,54(11-12):1717-1745
Meccanica - This study numerically investigates a low Reynolds two-dimensional flow of a viscoelastic fluid over a circular cylinder using the finite volume method. The Phan-Thien–Tanner...  相似文献   

19.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

20.
Zhokh  Alexey  Strizhak  Peter 《Meccanica》2022,57(4):833-843
Meccanica - In a porous fractal medium, the transport dynamics is sometimes anomalous as well as the crossover between numerous transport regimes occurs. In this paper, we experimentally...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号