首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal decomposition of zinc carbonate hydroxide   总被引:3,自引:0,他引:3  
This study is devoted to the thermal decomposition of two zinc carbonate hydroxide samples up to 400 °C. Thermogravimetric analysis (TGA), boat experiments and differential scanning calorimetry (DSC) measurements were used to follow the decomposition reactions. The initial samples and the solid decomposition products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and laser particle size analyzer. Results showed that zinc carbonate hydroxide decomposition started at about 150 °C and the rate of decomposition became significant at temperatures higher than 200 °C. The apparent activation energies (Ea) in the temperature range 150–240 °C for these two samples were 132 and 153 kJ/mol. The XRD analyses of the intermediately decomposed samples and the DSC results up to 400 °C suggested a single-step decomposition of zinc carbonate hydroxide to zinc oxide with not much change in their overall morphologies.  相似文献   

2.
Lifetime prediction of polymeric materials often requires extrapolation of accelerated aging data with the suitability and confidence in such approaches being subject to ongoing discussions. This paper reviews the evidence of non-Arrhenius behaviour (curvature) instead of linear extrapolations in polymer degradation studies. Several studies have emphasized mechanistic variations in the degradation mechanism and demonstrated changes in activation energies but often data have not been fully quantified. To improve predictive capabilities a simple approach for dealing with curvature in Arrhenius plots is examined on a basis of two competing reactions. This allows for excellent fitting of experimental data as shown for some elastomers, does not require complex kinetic modelling, and individual activation energies are easily determined. Reviewing literature data for the thermal degradation of polypropylene a crossover temperature (temperature at which the two processes equally contribute) of 83 °C was determined, with the high temperature process having a considerably higher activation energy (107–156 kJ/mol) than the low temperature process (35–50 kJ/mol). Since low activation energy processes can dominate at low temperatures and longer extrapolations result in larger uncertainties in lifetime predictions, experiments focused on estimating Ea values at the lowest possible temperature instead of assuming straight line extrapolations will lead to more confident lifetime estimates.  相似文献   

3.
Mercuric 5-nitrotetrazole is a possible replacement for lead azide. The thermal decomposition peak maximum ranged from 185 to 270°C as the heating rate increased from 0.1 to 100°C min−1. The activation energy and frequency factor for thermal decomposition were determined from dynamic and isothermal DSC and isothermal TG data; the average values were 38.8 kcal mol−1 and 3.56×1014 s−1. A half-life experiment confirmed the kinetic constants and indicated that the decomposition reaction was first order. The heat of explosion was determined by a pressure DSC test and found to be 2587 J g−1. The linear coefficient of expansion was 37±2×10−6°C−1 from −60 to 160°C and indicated secondary transitions near −10 and 90°C. The specific heat was 0.0003154T+0.1339 in the region −40–90°C. The critical temperature for a slab with a half-thickness of 0.035 cm was calculated to be 232 °C.  相似文献   

4.
The degradation kinetics of gamma radiolytically synthesized Ag–PVA nanocomposites was investigated by thermogravimetric method under dynamic conditions (30–600 °C) in an inert atmosphere. Thermogravimetric analysis showed that thermal degradation of composites was a two-stage process for the lower amount of nanofiller and single-stage for the higher amount of nanofiller. The Vyazovkin model-free kinetics method was applied to calculate the activation energy (Ea) of the degradation process as a function of conversion and temperature. At a given degradation temperature, PVA as a host in nanocomposite presents lower reaction velocity, while its Ea is higher than that of pure PVA.  相似文献   

5.
The thermooxidative degradation of poly(vinyl chloride)/chlorinated polyethylene blends of different compositions was investigated by means of isothermal thermogravimetry in flowing atmosphere of synthetic air at temperatures 240–270 °C. The main degradation processes are dehydrochlorination of PVC and CPE. For calculation of the apparent activation energy and apparent pre-exponential factor two kinetic methods were used: isoconversional method and Prout–Tompkins method. True compensation dependency between Arrhenius parameters, obtained using Prout–Tompkins model, was found. Calculated kinetic parameters of isothermal thermooxidative degradation are close to those from non-isothermal degradation and confirm the assumption of the main degradation process in PVC/CPE blends.  相似文献   

6.
The thermal stability of ethylene–propylene elastomers in the presence of light stabilizing antioxidant (Topanol OC) is studied. The oxygen uptake method was performed for determination of thermal oxidation in air atmosphere at constant temperatures (165°C, 175°C and 185°C). The experimental unit used for oxygen uptake measurements is described. The dependence of absorbed oxygen on various oxidation times reveals marked dissimilarity between the two ethylene–propylene elastomers, because the terpolymer contains 3.5% ethylidene-norbornene. Changes in the activation energy of oxidation are evaluated over the whole process time. Free energy vs reaction time curves for all degradation experiments are presented and some remarks on entropy change for the overall process are made in order to explain oxygen-containing product accumulation. Using Arrhenius plots the durability of EPDM/Topanol OC system was calculated.  相似文献   

7.
Studies of the thermal rearrangement and degradation of polyphenylene-ether (PPE) have been carried out by TGA (thermo-gravimetric analysis), GC-MS (gas chromatography-mass spectroscopy) and 1H-NMR. 2,6-Xylenol was a major scission product in the temperature range 420–700 °C, and 3,5-xylenol, as a scission product, decreased with increasing temperature. Four monomeric and eight dimeric scission products were observed at relatively high temperatures. The distribution of the scission products, which changed with increasing temperature, led to the suggestion that rearrangement of the PPE main-chain occurred to form diphenyl methylene groups, followed by thermal degradation.  相似文献   

8.
A series of aliphatic polyesters, in particular poly(ethylene succinate), having different molecular weights, were synthesized from succinic acid and ethylene glycol, following the melt polycondensation process. Intrinsic viscosities (IV), GPC, DSC, 1H NMR and carboxylic end group measurements were used for their characterisation. From thermogravimetric analysis, it was concluded that the molecular weight of polyesters achieved during polycondensation are strongly related to thermal stabilities of initial oligomers. In order to synthesise high molecular weight polyesters, the number average molecular weight of oligomers must not be lower than 2300–3000 g/mol, since thermal decomposition begins at temperatures lower than 200 °C. However, even in that case, polycondensation temperatures must not exceed 230–240 °C. From TGA studies, it was found that sample having different molecular weights could be divided into two groups characterized by different thermal stability. In the first group, belong samples with intrinsic viscosity of IV = 0.08 dL/g and in the second one all the other samples (IV > 15 dL/g). From kinetic analysis of thermal degradation, it was found that degradation of all polyesters takes place in three stages, its one corresponding to a different mechanisms. Degradation of samples with low molecular weight is more complex that that of polyesters having high molecular weights. The values of the activation energy and the exponent n for the two groups of samples—with different molecular weight—are similar, regarding the first two mechanisms, while there is an alteration in the case of the third mechanism.  相似文献   

9.
The thermal degradation of styrene-4-nitrostyrene copolymers (SNS) has been studied using differential thermal analysis (DTA) and thermogravimetry (TGA) under isothermal and dynamic conditions in dynamic nitrogen. The apparent activation energy of the degradative process was determined following several methods of thermogravimetric analysis. The stability decreases as the nitrostyrene content in the copolymer increases. Fourier-transform infra-red spectroscopy has been used to analyze the degradation products at various degrees of conversion.  相似文献   

10.
The process of artificial rancidification of extra-virgin olive oil due to heating in an oxidizing atmosphere was studied by testing an actual kinetic model of the process and monitoring the thermal oxidative degradation of the polyphenols contained in it. To this end, a series of oxidative degradation experiments were carried out on extra-virgin olive oil samples under isothermal conditions at 98, 120, 140, 160, and 180 °C using a thermostatic silicon oil bath. The experimental procedure used in this study carefully followed the recommendations regarding the study of olive oil rancidification set out in the AOM procedure. The change in polyphenol concentration with time was monitored at selected temperatures using a tyrosinase biosensor operating in an organic phase (n-hexane). The activation energy for the polyphenol degradation process determined using the MacCallum method was found to be practically constant throughout most of the process.

Furthermore, the application of the so-called “model-fitting” method to this process enabled the specific constant rates to be determined at the above-mentioned selected temperatures. In addition, a confirmation of the activation energy value was obtained by the “model-fitting” method and the algorithm of the kinetic model equation best-fitting the experimental curve representing the whole process was checked.

Finally, further very interesting observations were made, for instance, the half-life concentration values of polyphenols at selected temperatures between 98 and 180 °C.  相似文献   


11.
The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20–250°C gives k(20°C) = 2.4 × 1010M-1s1 and the activation energy EA = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20°C) = 3.1 × 1010M-1s-1 and EA = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5–175°C. For reaction with H2O2 the values are, k(20°C) = 1.2 × 1010M-1s-1 and EA = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5–150°C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction of hydrated electron with H2PO4- was determined to k(20°C) = 1.5 × 107M-1s-1 and EA = 7.4 kJ mol-1 (1.8 kcal mol-1) in the temperature range 20–200°C.  相似文献   

12.
The thermal properties and degradation behaviors of poly(norbornene-2,3-dicarboxylic acid dialkyl esters) (PNB-dialkyl esters) (alkyl = Me (PNB-Me), Et (PNB-Et), Pr (PNB-Pr), and Bu (PNB-Bu)) were investigated by thermogravimetric analysis (TGA) in dynamic conditions and by infrared (IR) spectroscopy. The PNB-dialkyl esters show good thermal stability up to 350 °C, and the thermal stability decreases in the order Me > Et > Pr > Bu with the increase in size of side chain. The effect of side-chain size on the thermal degradation behaviors of PNB-dialkyl esters is evidenced by one-step thermal degradation profile for PNB-Me while two-step thermal degradation profile for PNB-Et, PNB-Pr, and PNB-Bu. Transformation is deduced to undergo β-hydrogen elimination and formation of anhydride group in the first stage of thermal degradation reaction according to TGA and IR results for PNB-Et, PNB-Pr, and PNB-Bu. The apparent activation energy and thermal degradation model of PNB-dialkyl esters are estimated by means of Ozawa-Flynn-wall method and Phadnis-Deshpande method, respectively.  相似文献   

13.
The thermal degradation of lignins separated from black liquor waste from pulping of bagasse and cotton stalks has been investigated. Thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and derivative thermogravimetry (DTG), between 20 and 1000°C, have been used. Activation energies of treated lignins were calculated. Lignins separated from liquors obtained at low pulping temperature have higher activation energies than high-temperature lignins. The use of anthraquinone (AQ) as an additive for accelerating the pulping process raises the activation energy of the lignin in the black liquors waste.  相似文献   

14.
Surface and catalytic properties of Cu/Zn mixed oxide catalysts   总被引:1,自引:0,他引:1  
Copper catalysts supported on zinc oxide, with different loading (1–20 wt.% CuO), were prepared by impregnation of the basic zinc carbonate with a water solution of copper nitrate. The impregnated samples were dried at 120°C and calcined at 400–700°C. The surface and catalytic properties of CuO loaded on ZnO were determined by N2 adsorption measurements conducted at −196°C and CO oxidation by O2 at 150–300°C, respectively. The results obtained revealed that the surface and catalytic properties of different solids were dependent upon CuO content and calcination temperature. The specific surface areas of various adsorbents decreased monotonically as a function of both calcination temperature and extent of loading. However, the activation energy of sintering, ΔES, was found to increase by increasing the amount of CuO present. On the other hand, the CO oxidation activity on various catalysts was found to increase progressively by increasing the calcination temperature from 400 to 500°C, then decreased by increasing the temperature from 500 to 700°C. The augmentation of CuO content from 1 to 5 wt.% resulted in an increase in the CO oxidation activity, which decreased by increasing the extent of loading above this limit.  相似文献   

15.
This paper reports a study of the effect of accelerated heat ageing in air on the fracture toughness of two uPVC pipes. The pipes were extruded at 179°C and 195°C respectively and curved fracture toughness specimens were aged at temperatures between 100 and 140°C. After testing at a crosshead rate of 1 mm/min, a similar activation energy of between 104 and 115 kJ/mol was calculated, for both pipes, from the variation of fracture toughness with ageing time and temperature. Extrapolation of the elevated-temperature data down to 20°C showed thermo-oxidative degradation to have a small effect on the fracture toughness during the expected service lifetime of 50–100 years.  相似文献   

16.
The thermal stability of poly(N-vinyl-2-pyrrolidone-co-methacrylic acid) copolymers was studied by thermogravimetry and infrared spectroscopy in inert atmosphere. The thermogravimetric curves suggested that the effective degradation of both systems occurred in the temperature range 350–500 °C with more than 60% mass loss. At this temperature, the activation energy was in the range 160–200 kJ mol−1 (average values), suggesting that the degradation occurred by a random scission of the chain. The FTIR results indicated that the main volatile products of degradation are CO2, CO and hydrocarbons (unsaturated structures) with low molecular weight. Pure PVP also showed the formation of NH3 which was apparently suppressed in the copolymer by the formation of large amounts of CO2 and CO. The results suggested that the thermal stability of the copolymers was essentially associated with the N-vinyl-2-pyrrolidone monomer, losing stability when the percentage of methacrylic acid in the copolymer system was increased.  相似文献   

17.
Novel aluminised E-glass fibre reinforced unsaturated polyester composites, originally formulated for enhanced thermal and electrical shielding properties were evaluated in terms of their thermal performance. The thermal degradation of these specimens was analysed using a thermogravimetric analyser (TGA). The samples were heated from ambient temperature to 500 °C at a heating rate of 20 °C/min. All specimens were decomposed under dry nitrogen (N2) at a flow rate of 40 ml/min to yield gases and solid char. Aluminised E-glass composites were compared alongside the unmetallised E-glass and unreinforced composite. The major weight loss occurred between 200 and 400 °C. The unreinforced polyester had a maximum weight loss, 1.25%/°C, occurring at 360 °C. For the aluminised and unmetallised E-glass composites, the maximum rate of weight loss was 0.34 and 0.55%/°C, respectively. Experimental results show the degradation of the aluminised E-glass composites obtained from TGA tests is higher compared to those of unmetallised E-glass fibre and unreinforced polyester composite. This improvement is correlated to the aluminium coating.  相似文献   

18.
Effects of ethylene content and maleated EPDM content on the thermal stability and degradation kinetics of ethylene propylene diene monomer (EPDM) have been studied using high resolution thermogravimetric analysis (Hi-Res TGA) and Modulated TGA (MTGA). Modulated TGA shows that EPDM degradation is complex, with activation energy of degradation increasing throughout the degradation. Values from both dynamic and constant heating rate experiments are in good agreement with each other and with the literature value. However, the dynamic heating rate experiment shows that if the difference of peak temperature of components in a system is less than 5°C, Hi-Res TGA does not resolve them.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
The effects of doping of Co3O4with MgO (0.4–6 mol%) and V2O5 (0.20–0.75 mol%) on its surface and catalytic properties were investigated using nitrogen adsorption at −196°C and decomposition of H2O2 at 30–50°C. Pure and doped samples were prepared by thermal decomposition in air at 500–900°C, of pure basic cobalt carbonate and basic carbonate treated with different proportions of magnesium nitrate and ammonium vanadate. The results revealed that, V2O5 doping followed by precalcination at 500–900°C did not much modify the specific surface area of the treated Co3O4 solid. Treatment of Co3O4 with MgO at 500–900°C resulted in a significant increase in the specific surface area of cobaltic oxide. The catalytic activity in H2O2 decomposition, of Co3O4 was found to suffer a considerable increase by treatment with MgO. The maximum increase in the catalytic reaction rate constant (k) measured at 40°C on Co3O4 due to doping with 3 mol% MgO attained 218, 590 and 275% for the catalysts precalcined at 500, 700 and 900°C, respectively. V2O5-doping of Co3O4 brought about a significant progressive decrease in its catalytic activity. The maximum decrease in the reaction rate constant measured at 40°C over the 0.75 mol% V2O5-doped Co3O4 solid attained 68 and 93% for the catalyst samples precalcined at 500 and 900°C, respectively. The doping process did not modify the activation energy of the catalyzed reaction but much modified the concentration of catalytically active constituents without changing their energetic nature. MgO-doping increased the concentration of CO3+–CO2+ ion pairs and created Mg2+–CO3+ ion pairs increasing thus the number of active constituents involved in the catalytic decomposition of H2O2. V2O5-doping exerted an opposite effect via decreasing the number of CO3+–CO2+ ion pairs besides the possible formation of cobalt vanadate.  相似文献   

20.
In the present study, the kinetics of the thermal decomposition of magnesium hydroxide is investigated, using isothermal methods of kinetic analysis. For this purpose, experiments in thermogravimetric analyser were carried out in standard values of temperature (350°, 400°, 450° and 500°C) which resulted in weight loss percent as a function of time. The data were further modified to give fraction reacted ‘' versus time to be tested in various forms of ‘' functions. In order to determine the mechanism of the magnesium hydroxide decomposition and the form of the conversion function which governs the dehydroxylation of Mg(OH)2, four different methods of isothermal kinetic analysis were used. Applying each of these methods to the data, it was concluded that the nucleation mechanism predominates the Mg(OH)2, decomposition for all values of temperature tested; at 350°C the kinetic model which represents the experimental data is that of reaction at phase boundaries (random nucleation), F1: ln(1−)=kt) while for the higher temperatures 400°, 450° and 500°C the kinetic equation of nucleation and development in two dimensions, A2: [−ln (1−)]1/2=kt was found to fit better the experimental results. The activation energy was evaluated applying two alternative methods; the Arrhenius plot, using maximum rates of reaction, from which the activation energy was evaluated to be 20.54 kcal/mol. An alternative method based on plots of ln t versus 1/T corresponding to the same value of ‘' gave values of 10.72, 13.82 and 16.31 kcal/mol for ‘' values of 0.25, 0.50 and 0.75, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号