首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

2.
The condensation reaction of 2-aminobenzamide and aldehydes or ketones was investigated in the presence of nanocrystalline sulfated zirconia (SO4 2?/ZrO2) as solid acid catalyst. SO4 2?/ZrO2 nanoparticles with different calcination temperatures were prepared and characterized by XRD, FT-IR and SEM techniques. The results confirm good stabilization of tetragonal phase of zirconia in the presence of sulfate. The reusability experiments show partial deactivation of the catalyst due to leaching of the sulfate and coke deposition on the catalyst.  相似文献   

3.
A series of Fe‐doped (0.5%–3%) sulfated zirconia have been prepared by a hydrothermal treatment‐assisted process. Textural and structural characterizations of the as‐synthesized materials were performed by means of N2 adsorption, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy and thermogravi‐ metric analysis. Temperature‐programmed desorption of ammonia was used to determine the acidity of the samples. The effects of Fe‐doping on the structure, acidity and catalytic activity of sulfated zirconia for liquid‐phase α‐pinene isomerization were investigated. The incorporation of small amounts of Fe into sulfated zirconia results in the increase of sulfate content and the number of acid sites, which is responsible for the enhanced activity of Fe‐doped catalysts in comparison with the undoped one. Meanwhile, hydrothermal treatment helps to improve the activity of the catalyst.  相似文献   

4.
A highly active superacid of 2–4 wt.% Ru-sulfated ZrO2 for the isomerization of butane to isobutane was obtained by exposing RuOx/ZrO2 to 1 N H2SO4 followed by calcining in air at 550°C. The RuOx/ZrO2 was prepared by impregnating zirconium hydroxide with a solution of RuCl3 followed by drying at 300°C. The catalyst was much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion between both catalysts being more than 145°C.  相似文献   

5.
The condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO 4 2? -ZrO2) as the solid acid catalyst. Nanosized SO 4 2? -ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.  相似文献   

6.
Highly active superacids of Mn-, Fe-, and Al-sulfated ZrO2's for the isomerization of butane to isobutane were obtained by exposing zirconia gel to aqueous solutions of 0.05 M MnSO4, 0.25 M FeSO4, and 0.5 M Al2(SO4)3 followed by calcining in air at 700, 600, and 675°C, respectively. The catalysts were much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion (20%) between the catalysts and sulfated zirconia being 85, 77, and 85°C for the Mn-, Fe-, and Al-catalysts, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Solid catalyzed isobutane alkylation has been investigated for decades, but it has not yet been applied in any commercial uses because of the rapid deactivation of the catalyst. Here, the alkylation reaction has been studied under supercritical conditions using metal-promoted and unpromoted sulfated zirconia as catalysts. The catalytic activity at the supercritical condition of 5.0 MPa, 423K was significantly higher than at lower reaction pressure conditions and the deactivation rate was clearly reduced, independent on the catalyst. Iron- and manganese-promoted sulfated zirconia (SFMZ) showed higher activities under all conditions than unpromoted sulfated zirconia (SZ).  相似文献   

8.
用氧化硅掺杂硫酸化氧化锆可以增强硫酸化氧化锆的酸性. 以413~453 K下甲醇液相脱水为模型反应考察了改进催化剂的性能. 结果表明,在掺杂和未掺杂氧化硅的硫酸化氧化锆催化剂上甲醇均相继脱水生成二甲醚和乙烯. 在掺杂了氧化硅的催化剂上还有一定量的丙烯生成,而未掺杂氧化硅的催化剂上则没有丙烯生成.  相似文献   

9.
Mesoporous films of platinized carbon nanotube–zirconia–Nafion composite have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy)32+) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The composite films of Pt–CNT–zirconia–Nafion exhibit much larger pore diameter (3.55 nm) than that of Nafion (2.82 nm) and thus leading to much larger ECL response for tripropylamine (TPA) because of the fast diffusion of the analyte within the films. Due to the conducting and electrocatalytic features of CNTs and Pt nanoparticles, their incorporation into the zirconia–Nafion composite films resulted in the decreased electron transfer resistance within the films. The present ECL sensor based on the Pt–CNT–zirconia–Nafion gave a linear response (R2=0.999) for TPA concentration from 3.0 nM to 1.0 mM with a remarkable detection limit (S/N=3) of 1.0 nM, which is much lower compared to those obtained with the ECL sensors based on other types of sol‐gel ceramic–Nafion composite films such as silica–Nafion and titania–Nafion.  相似文献   

10.
Composites with the sulfated perfluoropolymer (SFP) (Nafion, etc.)—mesoporous support composition (SFP/support)—are promising solid acid catalysts with strong acid sites and very stable sulfo groups towards leaching processes. The effect of the SFP on the carbon nanofiber (CNF) (SFP/CNF) composite synthesis method, as well as the precursors of the acid phase, on the key acid catalyst characteristics (specific surface area and concentration and accessibility of the acid sites) is studied. The possibility of the direct composite synthesis from SO2F-polymer latexes obtained as a result of the water emulsion SFP synthesis (without the intermediate stages of isolating the SO3H form) is shown. The acid phase precursor types which are acceptable for the SFP/CNF composite synthesis (the equivalent polymer weight > 580 g/mol) are selected. The effect of the amount of the supported polymer on the total specific surface area and concentration and accessibility of the composite acid site is investigated. The structure of the synthesized composites is studied (by TEM, SAXS, and isopropanol TPD), and their catalytic activity in the test acetic acid esterification reaction is compared to the catalytic activity of pure polymer samples and acetic acid. It is found that the synthesized SFP/CNF samples outperform commercial SFP/SiO2 samples (SAC, DuPont), as well as the SFP/CNF samples prepared using polymer solutions in the SO3H form, in terms of the catalytic characteristics.  相似文献   

11.
The single‐site supported organozirconium catalyst Cp*ZrBz2/ZrS (Cp*=Me5C5, Bz=benzyl, ZrS=sulfated zirconia) catalyzes the single‐face/all‐cis hydrogenation of a large series of alkylated and fused arene derivatives to the corresponding all‐cis‐cyclohexanes. Kinetic/mechanistic and DFT analysis argue that stereoselection involves rapid, sequential H2 delivery to a single catalyst‐bound arene face, versus any competing intramolecular arene π‐face interchange.  相似文献   

12.
Metal-reinforced sulfonic-acid-modified zirconia catalysts were successfully prepared and used to remove trace olefins from aromatics in a fixed-bed reactor. Catalysts were characterized by ICP-OES, N2 adsorption–desorption, X-ray diffraction, thermogravimetric analysis (TGA), and pyridine-FTIR spectroscopy. Different metals and calcination temperatures had great influence on the catalytic activity. Alumina-reinforced sulfated zirconia exhibited outstanding catalytic performance, stable regeneration activity, and giant surface area, and are promising in industrial catalysis. TGA showed that the decomposition of methyl could be attributed to Brønsted acid sites, and pyridine-FTIR spectroscopy proved the weak Brønsted sites on these synthesized metal-reinforced sulfated zirconia. Also, a relation between the reaction rate and weak Brønsted acid density is proposed.  相似文献   

13.
The acidity of sulfated alumina catalysts was studied by analyzing DTG and heat of Ar adsorption together with the isomerization of pentane. The initial acid sites were Brönsted-type, and converted into Lewis-type upon increasing the pretreatment temperature. The heat of Ar adsorption of the most active sulfated alumina was 18.9 kJ mol–1, this value being a little smaller than that of sulfated zirconia (23.6 kJ mol–1).This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

14.
The activity of composite materials (acetylene black or ultrafinely divided dynamic diamond + Co-pyropolymer + Nafion solution) in the oxygen electroreduction in a 0.5 M H2SO4solution and when using a Nafion-117 film 200 m thick as a proton-conducting electrolyte is compared. It is established that the addition of Nafion in the active mass leads to a decrease in the electrocatalytic activity of the latter. The same composite catalyst (at an insignificant thickness of the active layer) in contact with a solid polymer electrode makes it possible to obtain current densities ten times those in a sulfuric acid solution. Possible reasons for these effects are discussed.  相似文献   

15.
Oligomerization of isobutene is a very promising reaction not only for the production of isobutene oligomers such as trimers but also for the separation of isobutene from C4 mixtures. Several solid acid catalysts have been applied for the continuous oligomerization of isobutene in liquid phase. This review analyzes the trimerization of isobutene over various solid acid catalysts such as zeolites, oxides (zirconias and titanias) and acid resins. Trimers selectivity increases with increasing isobutene conversion, irrespective of catalysts such as zeolites and acid resins. Very stable operation with high trimers selectivity is accomplished with WO x /ZrO2 catalyst having tetragonal zirconia or various zeolite catalysts with high Lewis acid site-to-Brønsted acid site ratio (LA/BA ratio). For a good performance, acid resins should be macroporous and strong acid (sulphonic acid group) with high acid concentration. Inorganic catalysts are superior to acid resins because the deactivated inorganic materials can be regenerated by simple calcination. The WO x /ZrO2 catalyst may be applied to a commercial process because about several thousand tons of isobutene can be oligomerized per one ton of zirconia catalyst in a catalytic cycle without regeneration. The oligomerization of isobutene may be improved further because the reaction has been started only recently and no research has been done for the optimization of the reaction and catalysts. It is expected to develop a new inorganic catalyst having suitable acidity, LA/BA ratio and phase, etc. by further research. The isobutene trimers, with or without hydrogenation, may be used for various purposes, and the importance of this trimerization reaction will be increased considering the expected surplus of isobutene due to the banned use of methyl-tert-butyl ether.  相似文献   

16.
A series of hydrous zirconia samples were prepared by the hydrothermal method, and the Pt/WO3-ZrO2 catalyst was prepared by impregnation. The effects of hydrothermal temperature of Zr(OH)4 on the isomerization activity of the catalyst was investigated. The crystalline structure, acidity, and reduction properties of the catalyst were characterized by X-ray diffraction, NH3 temperature-programmed desorption, and H2 temperature-programmed reduction, respectively. The results indicated that the crystalline structure of hydrous zirconia and the catalyst varied with the hydrothermal temperature, and the increase of hydrothermal temperature reduced the fraction of tetragonal zirconia. Strong acid sites on the catalyst and the isomerization activity increased with the crystallization of Zr(OH)4. It was proposed that the higher isomerization activity may be related to the existence of large numbers of strong acid sites.  相似文献   

17.
顾怡  匡伟伟  徐源吉  徐华龙  沈伟 《化学学报》2010,68(21):2145-2150
苯甲醚/苯甲酰氯的酰基化产物4-甲氧基二苯甲酮是多种精细化工产品的重要中间体. 本工作主要介绍了Nafion负载型SBA-15, SBA-16及Me-SBA-15介孔超强酸催化剂的制备及其在苯甲醚/苯甲酰氯酰基化反应中的应用. 实验结果表明, 单位时间单位Nafion活性位上的苯甲酰氯转化数高于传统HBeta沸石和硫酸氧化锆, 且载量的增加能显著提高酰基化催化性能. 甲基修饰的Me-SBA-15介孔材料明显改善了催化剂表面的疏水性能, 有效减缓了多聚芳烃副产物的生成, 反应的转化率得到大幅提高. 相对一维孔道结构的介孔SBA-15而言, 三维笼状结构的SBA-16对反应物及产物分子具有更好的扩散性能, 该结构优势由酰基化反应的高初始活性得以充分体现. 在整个反应过程中, 该类催化剂对4-甲氧基二苯甲酮具有专一的选择性.  相似文献   

18.
A series of SO42−-ZrO2-Al2O3 oxide supports containing from 18.8 to 89.1 wt % alumina was prepared by mixing sulfated zirconia hydrate (weight ratio ZrO2: H2SO4 = 9 : 1) and pseudoboehmite followed by calcination at 650°C. For the subsequent use of the supports to optimize the acid and hydrogenating properties of bifunctional hydroisomerization catalysts of the Pt/SO42−-ZrO2-Al2O3 type, the formation of these catalysts in the course of thermal treatment and their texture characteristics and phase composition were studied. It was found by chemical and thermogravimetric analysis that the addition of pseudoboehmite to sulfated zirconia hydrate resulted in a decrease in sulfur losses in the course of support production from 55.0 to 2.0% with respect to its nominal amount. As the alumina content was increased from 18.8 to 89.1 wt %, the specific surface area and the pore volume of the support increased nonadditively with respect to mechanical mixtures of sulfated zirconia and γ-alumina (from 155 to 197 m2/g and from 0.24 to 0.52 cm3/g, respectively); in this case, a maximum deviation was 18–21%. The experimental results can be explained by chemical interactions between the initial components of the supports. The results of thermogravimetric and X-ray diffraction analysis suggest that the reaction products are sulfated alumina and a sulfated ZrO2-Al2O3 solid solution.  相似文献   

19.
Sulfated zirconia catalysts were prepared by sol-gel method using CH3COOH as in situ water source to control hydrolysis of alkoxide, and following two sulfation procedures. The samples were characterized by N2 adsorption, XRD, chemical analysis, and the activity for isomerization of n-hexane was assessed. It was found that sulfation procedure and the amount of acetic acid added exert a great influence on the catalysts properties. Mixture of sulfuric acid with zirconium propoxide before addition of acetic acid allows the retention of a larger amount of sulfur after calcination and enhances catalytic performances of sulfated zirconia. The use of CH3COOH reduces the rate of hydrolysis, and improves considerably acidic and catalytic properties.  相似文献   

20.
Alumina doping and sulfation in hierarchically porous zirconia solid acids have been achieved simultaneously via one‐pot and bi‐surfactant‐assisted self‐assembly process, using aluminum sulfate as both Al and SO42? sources. The prepared composite solid acids showed much enhanced acidity and recycling catalytic activity for an esterification reaction compared with sulfated zirconia without alumina doping and Al‐doped sulfated zirconia without hierarchically porous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号