首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinuclear Au(I) amidinate complex Au2(2,6-Me2Ph-form)2 (1) is isolated in quantitative yield by the reaction of (THT)AuCl and the potassium salt of 2,6-Me2Ph-form in a 1:1 stoichiometric ratio. Various reagents such as Cl2, Br2, I2, CH3I, and benzoyl peroxide add to the dinuclear Au(I)amidinate complex Au2(2,6-Me2Ph-form)2 to form oxidative-addition Au(II) metal-metal-bonded complexes 2, 3, 4, 5, and 6. The Au(II) amidinate complexes are stable as solids at room temperature. The structures of the dinuclear Au2(2,6-Me2Ph-form)2 and the Au(II) oxidative-addition products Au2(2,6-Me2Ph-form)2X2, X=Cl, Br, I, are reported. Crystalline products with an equal amount of oxidized and unoxidized complexes in the same unit cell, [Au2(2,6-Me2Ph-form)2X2][Au2(2,6-Me2Ph-form)2], X=Cl, 2m, or Br, 3m, are isolated and their structures are presented. The structure of [Au2(2,6-Me2Ph-form)2X2][Au2(2,6-Me2Ph-form)2], X=Cl has a Au(II)-Au(II) distance slightly longer, 0.05A, than that observed in the fully oxidized product Au2(2,6-Me2-form)2Cl2, 2. The gold-gold distance in the dinuclear complex decreases upon oxidative addition with halogens from 2.7 to 2.5 A, similar to observations made with the Au(I) dithiolates and ylides. The oxidative addition of benzoyl peroxide leads to the isolation of the first stable dinuclear Au(II) nitrogen complex possessing Au-O bonds, Au2(2,6-Me2Ph-form)2(PhCOO)2, 6, with the shortest Au-Au distance known for Au(II) amidinate complexes, 2.48 A. The structure consists of unidentate benzoate units linked through oxygen to the Au(II) centers. The replacement of the bromide in 3 by chloride, and the benzoate groups in 6 by chloride or bromide also occurs readily. The unit cell dimensions are, for 1, a=7.354(6) A, b=9.661(7) A, c=11.421(10) A, alpha=81.74(5) degrees, beta=71.23(5) degrees, and gamma=86.07(9) degrees (space group P, Z=1), for 2.1.5C6H12, a=11.012(2) A, b=18.464(4) A, c=19.467(4) A, alpha=90 degrees, beta=94.86(3) degrees, and gamma=90 degrees (space group P21/c, Z=4), for 2m.ClCH2CH2Cl, a=16.597(3) A, b=10.606(2) A, c=19.809(3) A, alpha=90 degrees, beta=94.155(6) degrees, and gamma=90 degrees (space group P21/n, Z=2), for 3m, a=16.967(3) A, b=10.783(2) A, c=20.060(4) A, alpha=90 degrees, beta=93.77(3) degrees, and gamma=90 degrees (space group P21/n, Z=2), for 4.THF, a=8.0611(12) A, b=10.956(16) A, c=11.352(17) A, alpha=84.815(2) degrees, beta=78.352(2) degrees, and gamma=88.577(2) degrees (space group P, Z=1), for 5, a=16.688 A, b=10.672(4) A, c=19.953(7) A, alpha=90.00 (6) degrees, beta=94.565(7) degrees, and gamma=90.00 degrees (space group P21/n, Z=4), for 6.0.5C7H8, a=11.160(3) A, b=12.112(3) A, c=12.364(3) A, alpha=115.168(4) degrees, beta=161.112(4) degrees, and gamma=106.253(5) degrees (space group P, Z=1).  相似文献   

2.
The dinuclear gold(I) amidinate complex [Au(2)(Me(2)-form)(2)], 1, (Me(2)-form = 2,6-Me(2)-formamidinate) reacts with Hg(CN)(2) to form a 2D structure, 1.2Hg(CN)(2).2THF. Each gold center interacts with two Hg(CN)(2) molecules. The Au...Au distance increases from 2.7 Angstroms in the starting dinuclear complex to 2.9 Angstroms in the adduct. The gold centers are connected to four nitrogen atoms with Au-N distances in the range 2.13-2.51 Angstroms. The cyanide stretch is shifted from 2192 cm(-1) in the Hg(CN)(2) to 2147 cm(-1) in the adduct.  相似文献   

3.
The reaction of the phosphine thiosemicarbazone ligands HLPH and HLPMe with Au(I) ions yields the gold complexes [Au(3)(HLPH)(2)Cl(2)]Cl·2MeOH (1·2MeOH) and [Au(2)(HLPMe)Cl(2)] (2). The structures determined by X Ray diffraction, [Au(3)(HLPH)(2)Cl(2)]Cl·4MeOH (1·4MeOH) and [Au(2)(HLPMe)Cl(2)](2) (2), are the first examples of gold(I) thiosemicarbazone clusters showing aurophilicity. The structure of the trinuclear cation 1 contains the Au(1) atom located in an inversion centre, being connected to another gold(I) atom, Au(2), through a phosphino thiosemicarbazone molecule which acts as a S,P-bridging ligand. Additionally, every gold(I) atom in the trinuclear cation 1 assembles into trinuclear linear cluster units by means of close gold-gold interactions, being connected through the crystal cell in a 2D zigzag mode. The crystal structure of [Au(2)(HLPMe)Cl(2)](2) (2) contains one discrete molecule [(AuCl)(2)(HLPMe)] in the asymmetric unit, which is further assembled into tetranuclear [(AuCl)(2)(HLPMe)](2) units by means of close gold-gold interactions. Both clusters are highly luminescent in solution.  相似文献   

4.
The reaction of the sterically crowded dinuclear gold(I) amidinate complex Au2(2,6-Me2Ph-form)2, 1, with the less bulky bidentate nitrogen ligands results in the formation of tetranuclear gold(I) complexes. When the less bulky amidinate, K(4-MePh-form), A, was reacted with 1 in a 1:1 stoichiometric ratio, crystals containing equal amounts of the tetranuclear and dinuclear gold(I) aryl formamidinates, Au4(4-MePh-form)4 and Au2(2,6-Me2Ph-form)2, where 2,6-Me2Ph-form = B, were found in the same unit cell, 2 x 2THF: space group P, a = 10.794(11) A, b = 14.392(15) A, c = 25.75(3) A, alpha = 82.564(17) degrees, beta = 85.443(18) degrees, gamma = 82.614(19) degrees. The reaction of K(4-MePh-form), A, and 1 in a 1:2 ratio (excess) produced the tetranuclear complex only, 3. The potassium salt of the exchanged bulky ligand, K(2,6-Me2Ph-form), formed as a byproduct. The reaction of the dinuclear gold(I) complex Au2(2,6-Me2Ph-form)2 with the 3,5-diphenylpyrazolate salt, K(3,5-Ph2pz), resulted in the formation of two tetranuclear mixed-ligand complexes, Au4(3,5-Ph2pz)2(2,6-Me2Ph-form)2 x 2THF, 4 x 2THF (space group P21/c, a = 11.5747(19) A, b = 25.497(4) A, c = 21.221(3) A, beta = 96.979(3) degrees) and Au4(3,5-Ph2pz)3(2,6-Me2Ph-form) x THF, 5 x THF (space group P21/c, a = 23.058(5) A, b = 14.314(3) A, c = 18.528(4) A, beta = 90.94(3) degrees. The block crystals from the tetranuclear complex, 4 x 2THF, contain mixed ligands with each pyrazolate ring facing an amidinate ring. The tetranuclear mixed ligand complex, 5 x THF, was isolated as needles with ligands alternating above and below the Au4 plane. The two tetranuclear mixed-ligand complexes emit at 490 and 530 nm, respectively, under UV excitation.  相似文献   

5.
The reactions of sodium (aza-15-crown-5)dithiocarbamate with [AuClL] precursors lead to mono-, di-, or hexanuclear derivatives depending on L. The homoleptic hexanuclear gold(I) cluster [Au6(S2CNC10H20O4)6] is formed by displacement of the chloride and isocyanide ligands in [AuCl(CN(2,6-Me2C6H3))]. X-ray diffraction studies show a novel geometry in gold cluster chemistry where the six gold atoms display a cyclohexane-like geometry in a chair conformation with Au-Au-Au angles of 117.028(9) degrees, two short gold-gold distances of 2.9289(5) A, and bidentate bridging dithiocarbamate ligands. The molecular structure shows a crown of gold atoms surrounded by crown ethers. This derivative luminesces at 569 nm at room temperature in the solid state. A dinuclear isomer [Au2(S2CNC10H20O4)2] had been reported previously and was obtained by reaction with [AuCl(SMe2)]. The mechanism to obtain the hexanuclear derivative involves a mononuclear intermediate [Au(S2CNC10H20O4)(CNR)] for which the X-ray structure shows a short gold-gold distance of 3.565 A with the two molecules in an anti configuration. Phosphine gold(I) mononuclear derivatives [Au(S2CNC10H20O4)(PR3)] (R = Me, Ph, both characterized by X-ray diffraction) and dinuclear diphosphine derivatives [{Au(S2CNC10H20O4)}2(mu-P-P)] (P-P = dppm, bis(diphenylphosphinomethane); dppp, 1,3-bis(diphenylphosphinopropane); and dppf, 1,1'-bis(diphenylphosphinoferrocene)) are also reported. In the mononuclear complexes, the molecular structure confirms that the dithiocarbamato ligand is mainly acting as monodentate, with a second longer Au-S distance of 3.197 (PMe3), 2.944(4) (PPh3), and 2.968 A (CNR). Three phosphine complexes are emissive at 562 (PMe3), 528 (PPh3), and 605 nm (dppm), at 77 K. X-ray diffraction studies of the dppm derivative show gold-gold intramolecular contacts of 3.0972(9) A (3.2265(10) A for a second independent molecule) and basically monodentate coordination of the dithiocarbamato ligands. All the complexes extract sodium and potassium salts from aqueous solutions. The diphosphine derivatives are noticeably better extractors than the monophosphino derivatives, mainly for potassium salts.  相似文献   

6.
We have synthesized and characterized a series of trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine; X = Cl 1, Br 2, I 3, C(6)F(5) 4) and di- and trinuclear gold(III) complexes [[Au(C(6)F(5))(3)](n)(mu-triphos)] (n = 2 (5), 3 (6)). The crystal structure of 6 [[Au(C(6)F(5))(3)](3)(mu-triphos)] has been determined by X-ray diffraction studies, which show the triphosphine in a conformation resulting in very long gold-gold distances, probably associated with the steric requirements of the tris(pentafluorophenyl)gold(III) units. Complex 6 crystallizes in the triclinic space group P(-1) with a = 12.7746(16) A, b = 18.560(2) A, c = 21.750(3) A, alpha = 98.215(3) degrees, beta = 101.666(3) degrees, gamma = 96.640(3) degrees, and Z = 2. Chloride substitutions in complex 1 afford trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (X = Fmes (1,3,5-tris(trifluoromethyl)phenyl) 7, p-SC(6)H(4)Me 8, SCN 9) and [Au(3)Cl(3)(-)(n)()(S(2)CNR(2))(n)(mu-triphos)] (R = Me, n = 3 (10), 2 (12), 1 (14); R = CH(2)Ph, n = 3 (11), 2 (13), 1 (15)). The luminescence properties of these complexes in the solid state have been studied; at low temperature most of them are luminescent, including the gold(III) derivative 6, with the intensity and the emission maxima being clearly influenced by the nature and the number of the ligands bonded to the gold centers.  相似文献   

7.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

8.
Reactions of [Au(PPh3)Cl], (Bu4N)[AuCl4] and the organometallic gold complex [Au(damp-C1,N)Cl2] (damp- = 2-(N,N-dimethylaminomethyl)phenyl) with the potentially tri- and tetradentate proligands PhP(C6H3-SH-2-R-3)2 (H2L1a, R = SiMe3; H2L1b, R = H) and P(C6H4-SH-2)3 (H3L2) result in the formation of mono- or dinuclear gold complexes depending on the precursor used. Monomeric complexes of the type [AuL1Cl] are formed upon the reaction with [Au(damp-C1,N)Cl2], but small amounts of dinuclear [AuL1]2 complexes with gold in two different oxidation states, +1 and +3, have been isolated as side-products. The dinuclear compounds are obtained in better yields from [AuCl4]-. A dinuclear complex having two Au(III) centers can be isolated from the reaction of [Au(PPh3)Cl] with H3L2, whereas from the reaction with H2L1b the mononuclear [Au(Ph3P)HL1b] is obtained, which contains a three-coordinate gold atom. Comparatively short gold-gold distances have been found in the dinuclear complexes (2.978(2) and 3.434(1) A). They are indicative of weak gold-gold interactions, which is unusual for gold(III).  相似文献   

9.
The binuclear cycloaurated compounds [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(2)] (n = 5, 1a; n = 6, 1b) react with the digold(I) complexes [Au(2)(mu-S(2)CN(n)()Bu(2))(2)] and [Au(2)(mu-dppm)(2)](PF(6))(2) to give heterobridged dinuclear complexes [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-S(2)CN(n)Bu(2))] (n = 5, 5a; n = 6, 5b) and [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-dppm)]PF(6), (n = 5, 9a; n = 6, 9b), respectively. Complex 5a exists in the solid state as an infinite zigzag chain of dimeric units with intramolecular Au-Au separations of 2.8331(3) and 2.8243(3) A for independent molecules and intermolecular Au-Au separations of 3.0653(3) and 3.1304(3) A. Both 5a and 5b undergo oxidative addition with halogens to give the heterovalent, gold(I)-gold(III) compounds [XAu(I)(mu-2-Ph(2)PC(6)H(3)-n-Me)Au(III)X(eta(2)-S(2)CN(n)Bu(2))] [n = 5, X = Cl (6a), I (8a); n = 6, X = Cl (6b), Br (7b), I (8b)]. Compound 8a has been shown by X-ray crystallography to contain a gold(III) atom coordinated in a planar array by bidentate, chelating di-n-butyldithiocarbamate, iodide, and the sigma-aryl carbon atom, together with a gold(I) atom that is linearly coordinated by the phosphorus atom of the arylphosphine and by iodide. The intramolecular gold-gold distance of 3.2201(3) A indicates little or no interaction between the metal atoms. In contrast to the behavior of the homobridged complexes 1a and 1b, the heterobridged dithiocarbamate complexes 5a and 5b give structurally similar products on reaction with halogens, irrespective of the position of the ring methyl substituent. Crystal data for [Au(2)(mu-C(6)H(3)-2-PPh(2)-5-Me)(mu-S(2)CN(n)Bu(2))] (5a): triclinic, space group P1 (No. 2), with a = 11.3398(1), b = 15.9750(2), c = 16.4400(3) A, alpha = 91.0735(9), beta = 109.3130(7), gamma = 90.7666(8) degrees, V = 2809.47(6) A(3), and Z = 4. Crystal data for [IAu(I)(mu-2-Ph(2)PC(6)H(3)-5-Me)Au(III)I(eta(2)- S(2)CN(n)Bu(2))] (8a): triclinic, space group P1 (No. 2), with a = 8.6136(2), b = 9.3273, c = 21.1518(4) A, alpha = 84.008(1), beta = 84.945(1), gamma = 75.181(1) degrees, V = 1630.54(6) A(3), and Z = 2.  相似文献   

10.
The structures of the tetranuclear silver(I), [Ag4(hpp)4], and the dinuclear gold(II), [Au2(hpp)2Cl2], (hpp = 1,3,4,6,7,8-hexahydro-pyrimido[1,2-a]pyrimidinate) guanidinate-like bases are reported and show a silver-silver distance of 2.8614(6) A and a gold-gold distance of 2.4752(9) A, the shortest Au-Au bond heretofore reported.  相似文献   

11.
Various reagents such as Cl2, Br2, I2, benzoyl peroxide and CH3I add to the dinuclear gold(I) amidinate complex [Au2(2,6-Me2Ph-form)2] to form oxidative-addition gold(II) metal–metal bonded complexes. The gold–gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 Å, similar to observations made with dithiolate and ylide ligands. The sodium salt of the guanidinate Hhpp ligand, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine reacts with (THT)AuCl in THF or CH2Cl2 to form a Au(II) complex, [Au2(hpp)2Cl2], either by solvent oxidation or disproportionation of the Au(I) to Au(II) and the metal. Density functional theory (DFT) and MP2 calculations on [Au2(hpp)2Cl2] find that the highest occupied molecular orbital (HOMO) is predominately hpp and chlorine-based with some Au–Au δ* character. The lowest unoccupied molecular orbital (LUMO) has metal-to-ligand (M–L) and metal-to-metal (M–M) σ* character (approximately 50% hpp/chlorine, and 50% gold). The charge-transfer character of the deeply colored solutions is observed in all the oxidative-addition products of the dinuclear gold(II) nitrogen ligands. This contrasts with the colors of the gold(II) ylide oxidative-addition products which are pale yellow. The colors of the crystalline gold(II) nitrogen complexes are dark orange to brown. This review will focus on the chemistry of gold(II) with nitrogen ligands and compare this with the well reviewed chemistry of gold(II) thiolate and ylide complexes.  相似文献   

12.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

13.
The synthesis and characterization of gold(I) complexes of butyl xanthate [Au(2)((n)()Bu-xanthate)(2)], 1, and ethyl xanthate [Au(2)(Et-xanthate)(2)], 2, are described. These complexes are readily prepared from the reaction between Au(THT)Cl (THT = tetrahydrothiophene) and the corresponding xanthate ligands as the potassium salts. The two xanthate complexes are characterized by (1)H NMR, IR, mass spectrometry, elemental analysis, and UV-vis techniques. Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) show that the gold xanthate complexes decompose to yield mainly gold metal at approximately 200 degrees C, confirmed by X-ray powder diffraction. Excitation of the complexes at 450 nm in the solid state at 77 K produces a strong red emission at ca. 690 nm with a broad asymmetric profile tailing to 850 nm. The dinuclear gold(I) xanthate complex, [Au(2)(nBu-xanthate)(2)], 1, is the first structurally characterized binary Au(I) xanthate. The Au...Au distance in the eight-membered ring is 2.8494(15) A while the shortest intermolecular Au...Au interaction between independent units is 3.64 A. The angle between the planes containing the molecules in the unit cell is approximately 69.56 degrees. The light green plates of [Au(mu-S(2)COBu(n))](2) crystallize in the orthorhombic space group P2(1)2(1)2 with a = 37.254(14) A, b = 7.287(3) A, c = 6.054(2) A, alpha = beta = gamma = 90 degrees, Z = 4, and V = 1643.4(11) A(3).  相似文献   

14.
Reaction of HCl with [RhCl(C2H4)(PR3)]2 affords the dinuclear alkylrhodium(III) complex [RhCl2(C2H5)(PR3)]2, the structure of which has been determined crystallographically. PR3 is the formerly unknown trialkyl phosphine tBu2PCH2CH2C6H3-2,6-Me2, prepared in three steps from tBuPCl2. Treatment of the title compound with CO gives the mononuclear rhodium dicarbonyl cis-[RhCl(CO)2(PR3)], being the first fully characterized complex of this type.  相似文献   

15.
We report the formation of an unexpected trinuclear palladium beta-diiminate complex from the decomposition of [Pd(Ph(2)nacnac)(Cl)(4-H(2)NC(6)H(4)-(t)Bu)] (nacnac = beta-diiminate derived from acetylacetone), the proposed reaction pathway, and the synthesis of the first dinuclear palladium complex with an amido-chloro double-bridge.  相似文献   

16.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

17.
A series of polynuclear mixed-ligand tris(pyrazolyl)methane iron(II) complexes displaying high temperature spin crossover behaviour has been synthesised. These complexes are of the type [(Fe((3,5-Me(2)pz)(3)CH))(n)(μ-L)](BF(4))(2n), where μ-L is one of five bridging ligands X(CH(2)OCH(2)C(pz)(3))(n), (X = the central linking moiety, pz = pyrazolyl ring and n = 2 (ditopic), 3 (tritopic) or 4 (tetratopic)). Throughout the series the terminal tris(3,5-dimethylpyrazolyl)methane co-ligand (3,5-Me(2)pz)(3)CH and the BF(4)(-) counter anion were kept constant while variations in the central linking moiety have produced three dinuclear complexes and a trinuclear and tetranuclear complex, all isolated as solvates. The three dinuclear complexes are a 1,4-xylene-bridged complex 1·2DME, a 2,6-naphthalene-bridged complex 2·2.5MeCN.2DME and a 1,4-butene-bridged complex 3·2DME. The trinuclear complex 4·solvent (solvent undefined) has a 1,3,5-mesitylene core and the tetranuclear complex, 5·8MeCN.2(t)BuOMe, has a 1,2,4,5-tetramethylbenzene core (DME = dimethoxyethane, (t)BuOMe = tertiarybutyl-methylether). The trinuclear cluster has a "3-up" cup shape with the cups arranging themselves in pairs to form capsules that contain anion guests. All the solvated compounds have been structurally characterised and both the solvated and desolvated versions have had their magnetic and thermal properties thoroughly investigated by variable temperature magnetic susceptibility, differential scanning calorimetric and M?ssbauer spectral methods. They all display typical low spin iron(II) magnetic behaviour at room temperature and all undergo a spin state transition to high spin iron(II) above room temperature. In particular, complex 1·2DME shows an abrupt spin transition which shifts, upon desolvation, to a lower value of T(1/2) and in addition displays a small thermal hysteresis.  相似文献   

18.
Dinuclear three-coordinate Au(I) complex [Au2{(Ph2Sb)2O}3](ClO4)2 1 displays an interesting phosphorescent behavior in which a large Stokes' shift is observed. Ab initio calculations show that the main distortion for the first triplet excited state, which is responsible for the luminescence behavior of complex 1, is a Jahn-Teller distortion for only one of the Au(I) centers together with a gold-gold distance shortening. This behavior could be extrapolated to other phosphorescent dinuclear three-coordinate Au(I) complexes.  相似文献   

19.
The reaction of ZnCl(2) with tert-butylphosphonic acid and 3,5-dimethylpyrazole in the presence of triethylamine as a hydrogen chloride scavenger affords a trinuclear molecular zinc phosphonate [Zn(3)Cl(2)(3,5-Me(2)Pz)(4)(t-BuPO(3))(2)]. The structure of this compound contains a planar trizinc assembly containing two bicapping mu(3) [t-BuPO(3)](2-) ligands and terminal pyrazole and chloride ligands. In contrast an analogous reaction of ZnCl(2) with phenylphosphonic acid and 3,5-dimethylpyrazole affords a hexanuclear zinc phosphonate [Zn(6)Cl(4)(3,5-Me(2)PzH)(8)(PhPO(3))(4)]. The six zinc centers are arranged in a chairlike conformation. The four phosphonates in this complex also act as bridging tripodal mu(3) [RPO(3)](2-) ligands.  相似文献   

20.
Metathesis reactions of the alkali metal formamidinates M(RNC(H)NR), M = Li or K; R = C(6)H(3)-2,6-Pr(i)(2) (L(1)), C(6)H(3)-2,6-Et(2) (L(2)); C(6)H(2)-2,4,6-Me(3) (L(3)), C(6)H(3)-2,6-Me(2) (L(4)) or C(6)H(4)-2-Ph (L(5)), with BiX(3) (X = Cl or Br) gave a range of bismuth(iii) formamidinate complexes [Bi(L)Br(micro-Br)(thf)](2) (L = L(1), L(4)), [{Bi(L(1))Cl(2)(thf)}(2)Bi(L(1))Cl(2)], [Bi(L)(2)X] (L = L(2), L(5), X = Br; L = L(1), X = Cl), and [Bi(L)(3)] (L = L(2), L(3)). An analogous organometallic complex Bi(L(1))(2)Bu(n) was also isolated as a side product in one instance. Structural characterisation of the di-halide complexes show symmetrical dimers for X = Br, with two bromide bridges, and a coordinated thf molecule on each Bi atom, whereas for X = Cl a thf deficient species was crystallised, and has a weakly associated trinuclear array with two coordinated thf molecules per three Bi atoms. Complexes of the form Bi(L)(2)X (X = Br, Cl, Bu(n)) and Bi(L)(3) all have monomeric structures but the Bi(L)(3) species show marked asymmetry of the formamidinate binding, suggesting that they have reached coordination saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号