首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

2.
甲醛在CeO2(111)表面吸附的密度泛函理论研究   总被引:3,自引:1,他引:3  
采用基于第一性原理的密度泛函理论和周期平板模型, 研究了甲醛在以桥氧为端面的CeO2(111)稳定表面上的吸附行为. 通过对不同覆盖度, 不同吸附位的甲醛吸附构型、吸附能及电子态密度的分析发现, 甲醛在CeO2(111)表面存在化学吸附与物理吸附两种情况. 化学吸附结构中甲醛的碳、氧原子分别与表面的氧、铈原子发生相互作用, 形成CH2O2物种; 吸附能随着覆盖度的增加而减小. 与自由甲醛分子相比, 物理吸附的甲醛构型变化不大, 其吸附能较小. 利用CNEB(climbing nudged elastic band)方法计算了甲醛在CeO2(111)表面的初步解离反应活化能(约1.71 eV), 远高于甲醛脱附能垒, 这与甲醛在清洁CeO2(111)表面程序升温脱附实验中产物主要为甲醛的结果相一致.  相似文献   

3.
二氧化铈纳米粒子(CeO2)n(n=1~5)材料为固态氧化燃料电池中的催化剂,因此了解其不同尺寸结构的性质是非常重要的.在本论文中使用分子动力学(molecular dynamics)模拟结合火焰算法(FIRE algorithm)计算得到二氧化铈的最小能量结构.再应用密度泛函理论方法(density functional theory)对这些结构进一步计算,得到更精确的最低能量结构.  相似文献   

4.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2(111)表面的吸附行为。结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定。当金属原子吸附在氧顶位时,吸附强度依次为Pt > Rh > Pd > Au。Pd、Pt与Rh吸附后在Ce 4f、O 2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O 2p峰在-4~-1 eV重叠。态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致。  相似文献   

5.
为从微观角度深入探讨单个水分子与高岭石最易解理晶面不同暴露末端的作用特点,本工作通过密度泛函理论的计算方法对不同吸附形态的水分子与不同暴露末端的稳定作用构型进行几何结构与电子结构分析.吸附能的计算结果表明水分子在铝氧八面体羟基作为暴露末端的表面上最稳定的吸附方式为水分子的氧原子和氢原子分别与相邻两个羟基的氢原子和氧原子...  相似文献   

6.
用密度泛函理论在B3LYP/6-31++G(d,p)水平研究了次磷酸根(H2PO2-) 在Ni(111)和Ag(111)表面吸附的表面结构和电子特性。最稳定的结构是H2PO2-中的两个P-O键朝向基底表面。Mulliken布居分析结果表明,由于电子构型的微小差别,导致了H2PO2- 在Ni(111)表面上的吸附能远大于在Ag(111)表面上吸附能,Ni(111)表面上的电子给予与反馈数量远大于在Ag(111)表面上的电子给予与反馈数量。与吸附在Ag(111)表面上相比较,当H2PO2- 吸附在Ni(111)表面上时有更多的负电荷转移到基底,且P原子上有更多的正电荷。这意味着吸附在Ni(111)表面上的H2PO2-更容易被像OH-一样的亲核试剂进攻。因此,吸附在Ni(111)表面上的H2PO2-比吸附在Ag(111)表面上的H2PO2-更容易被氧化。这些结果表明对于H2PO2-的氧化,银表面不具有活化作用而镍表面则具有活化作用。  相似文献   

7.
张洁  龚学庆  卢冠忠 《催化学报》2014,35(8):1305-1317
通过在位库伦校正的密度泛函理论(DFT+U)方法计算,我们研究了CO和NOx分子在Au负载CeO2(110)表面的吸附. 结果表明,CO在Au纳米颗粒的顶位有很强的吸附能,大约为1.2 eV,而NO在Au纳米颗粒上或者Au与CeO2载体界面处都是弱吸附. 然而,当NOx在界面处形成N2O2二聚体之后,通过断裂末端的N-O键能够有效地被降解. 纵观整个反应过程,第一步CO+N2O2的反应遵循了Langmuir-Hinshelwood机理,活化能只有0.4 eV,通过形成ONNOCO的中间物种最终产生N2O和CO2. 不同的是,第二步消除N2O反应遵循了Eley-Rideal碰撞机理,需要相当高的能垒,约为1.8 eV. 通过进一步分析表明,稀土Ce元素独特的电子特性能够使电子从Au上转移并且局域到载体表面的Ce阳离子上,并且有助于形成带负电的N2O2分子. 而且Au纳米颗粒有很强的结构流动性,能够促进吸附的CO分子靠近界面处的N2O2并与之反应.  相似文献   

8.
氢自由基在Fe表面的吸附是典型的表面吸附反应.本文首先对α-Fe体相开展研究,再对Fe(111)的周期性平板模型进行了参数测试,确定了7层模型可以有效表示Fe(111)表面.研究了氢原子在Fe的刚性表面和柔性表面上的吸附情况,发现弛豫效应主要集中在上3层表面,而底层4层原子几乎未发生驰豫.发现氢原子在Fe(111)表面...  相似文献   

9.
二氧化铈的氯化反应机制研究   总被引:9,自引:2,他引:7  
通过考察反应温度,时间及NH4Cl用量对CeO2氯化的影响以及CeCl3.7H2O的热分解行为的研究,对CeO2的氯化机制进行了探讨。结果表明,CeO2在空气氛下采用NH4Cl氯化,在300℃下其氯化率达到80%左右,更高的温度反而不利于CeO2的氯化,这主要是由于CeCl3.7H2O的热分解造成的。同时CeO2的氯化并不是NH4Cl产生HCl发生氰化,而是NH4Cl直接参与反应,生成中间化合物CeOCl,然后转化为CeCl3.CeCl3.7H2O的热分解及热分析研究进一步说明了CeOCl的存在,因此采用NH4Cl氯化CeO2时,一方面应控制反应温度及反应时同,同时,过量的NH4Cl有利于CeCl3形成。  相似文献   

10.
采用密度泛函理论(DFT)计算了CH4在电中性(CeO2)m(m=1~3)团簇上的活化情况, 并对其机理进行了探讨. 计算结果表明, 甲烷C—H键在团簇上的活化为亲核加成模式, 电子由团簇流向甲烷C—H反键轨道, 使甲烷C—H键削弱而得以活化, 反应的过渡态为四中心结构. 团簇的桥氧位活化甲烷C—H键的活性大于端氧位, 而三重桥氧位的活性高于二重桥氧位. 团簇中作用位点Ce和O原子的电荷布居与其活化甲烷C—H的能力密切相关. 溶剂的存在不仅降低了甲烷C—H活化自由能垒, 而且使与甲烷作用的团簇各位点的活性差异缩小.  相似文献   

11.
用杂化密度泛函B3LYP方法在6-311+G(d)基组水平上研究了Fe 原子与N2分子相互作用的单端位构型的直线形和弯曲形两种结构的平衡几何结构、电子结构、轨道布局及红外光谱等性质. 计算结果表明, 由于强的σ-σ电子对互斥作用, 基组态4s23d6的Fe原子不能与N2分子发生化学作用; 当Fe 原子呈现可与N2之间发生σ-π授予反馈作用的激发组态时, Fe 与N2分子之间可形成稳定的结构; 在得到的多个电子态中, 能量最低的是直线形的13-, 比Fe(a5D)和N2(1+g )能量高21.6 kJ·mol-1, 同时存在几个能量相近的电子态, 如13∏、13Φ; 弯曲形都是不稳定态, 可能是连接直线形和单侧双配位构型的过渡态; 单端位构型产物相对于基态的反应物均是热力学不稳定的; 单端位构型中Fe对N2的活化作用很小, N—N 键长增加不超过7 pm.  相似文献   

12.
The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur-face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.  相似文献   

13.
利用密度泛函方法对丙烯腈在Cu(111)面上不同吸附位的吸附状态进行了理论研究. 计算结果表明, 丙烯腈分子通过端位N原子立式吸附在金属铜表面为弱化学吸附, 其中桥位为较佳吸附位, 结合能为-40.16 kJ/mol; 丙烯腈分子和金属铜之间发生了电荷转移, N原子的孤对电子与金属形成σ共价键; 对丙烯腈分子结构变化进行了NBO分析, 解释了丙烯腈分子吸附后被活化的原因.  相似文献   

14.
采用广义梯度近似(GGA)密度泛函理论(DFT)的PW91方法结合周期性模型, 在DNP基组下, 利用Dmol3模块研究了CO和H2在真空和液体石蜡环境下在Cu(111)表面上不同位置的吸附. 计算结果表明, 溶剂化效应对H2和CO的吸附结构参数和吸附能的影响非常显著. 在液体石蜡环境下, H2平行吸附在Cu(111)表面是解离吸附, 而CO 和H2在两种环境下的垂直吸附都是非解离吸附. 相比真空环境吸附, 在液体石蜡环境中, Cu(111)吸附CO时, 溶剂化效应能够提高CO吸附的稳定性, 同时有利于CO的活化. 在真空中, H2只能以垂直方式或接近垂直方式吸附在Cu(111)表面. 当Cu(111)顶位垂直吸附H2, 相比真空环境吸附, 溶剂化效应能够提高H2吸附的稳定性, 但对H2的活化没有明显影响. Cu(111)表面的桥位或三重穴位(hcp和fcc)垂直吸附H2时, 溶剂化效应能明显提高H2的活化程度, 但降低H2的吸附稳定性; 在液体石蜡中, 当H2平行Cu(111)表面吸附时, 溶剂化效应使H—H键断裂, 一个H原子吸附在fcc位, 另一个吸附在hcp位.  相似文献   

15.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Ru15为模拟表面,对甲醇在理想的Ru(0001)面三种吸附位置(top,fcc,hcp)的吸附模型进行了几何构型优化,能量计算,Mu lliken布局分析以及振动频率计算,结果表明顶位为最有利的吸附位.这些变化与实验观察到的甲醇在过渡金属表面解离的结果相一致.同时通过对吸附过程的分析推测其可能的解离途径.  相似文献   

16.
用量子化学从头算方法,以原子簇Al10模拟表面,研究了水在Al(111)表面上不同吸附位的吸附情况,计算得到了稳定的吸附构型和结合能·结果表明:顶位是其最佳吸附位,而且水在表面能以两种取向被吸附,距表面较远时,H端靠近表面,然后跨过一能垒到达最佳吸附位,此时氧端靠近表面·在吸附过程中,水向表面转移电荷,导致表面功函降低·在氧原子不加极化函数时,水分子的二次轴垂直于表面时能量最低;当考虑水中氧的d轨道的影响时,水分子倾斜吸附时能量较低,得到与实验相符的吸附构型。另外还研究了表面电荷对吸附体系的影响,结果表明:表面电荷能使水分子定向,带正电荷时,氧端朝向表面,水分子与表面间平衡距离缩短,吸附作用较强;带负电荷时,水分子氢端朝向表面,吸附的平衡距离较长,吸附能较小。  相似文献   

17.
三种Au(111)催化水煤气变换反应机理的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论对三种水煤气变换反应(WGSR)机理(氧化还原机理、羧基机理、甲酸基的生成机理)在Au(111)面上的反应历程进行详细讨论.通过对表面吸附物种(H2O、CO、OH、O、H、CO2、COOH、HCOO)的吸附行为进行研究,得到最佳活性吸附中心.对三种机理中的14个基元反应的活化能进行分析,得出WGSR在Au(111)上按照羧基机理和氧化还原机理进行的可能性较大,按照甲酸基的生成机理进行的可能性较小.相比较羧基机理和氧化还原机理,反应更有可能按照羧基机理进行,最佳反应途径为H2O-H→OH+CO→COOH+OH→CO2.  相似文献   

18.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Au(111)表面的吸附构型和电子结构. 系统地计算了S原子在不同位置以不同方式吸附的系列构型, 计算结果表明, CH3SH分子倾向于吸附在top位上, S-C键相对于Au表面法线的夹角为62°~78°|而S-H键断裂后CH3S_H则倾向于吸附在bri-fcc位上, S-C键相对于Au(111)表面法线的夹角为49°~57°. 比较分析CH3SH分子和CH3S_H的吸附, 发现CH3SH分子倾向于不解离吸附, 表面温度的提升和缺陷的出现可能促使S-H键的断裂. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S-H键断裂后S原子和表面的键合强于S-H键未断裂时S原子和表面的键合. 扫描隧道显微镜(STM)图像模拟显示了CH3SH和CH3S_H在Au(111)表面吸附的3个典型的STM图像.  相似文献   

19.
一氧化碳共吸附法确定叔丁胺分子在Cu(111)表面的吸附位   总被引:1,自引:0,他引:1  
采用扫描隧道显微镜(STM)和密度泛函理论(DFT)研究了78 K时单个叔丁胺分子在Cu(111)表面的吸附位. 我们提出以共吸附的一氧化碳√3 ×√3 超结构为基底铜原子的标识方法, 确定了低覆盖度的叔丁胺分子在Cu(111)表面的吸附位为顶位. 而采用单个一氧化碳分子标识基底铜原子的位置, 同样得出了叔丁胺分子的吸附位为顶位. 此外, 还采用DFT计算叔丁胺分子在Cu(111)表面的优势吸附构型. 理论计算结果表明顶位吸附构型为能量最稳定的构型, 与实验结果相吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号