首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A new flow injection procedure for an assay of Fe(III) by using salicylate obtained from antipyretic powder, which is a cheap and easily available reagent, is proposed. A red complex was continuously monitored by a laboratory-made green LED colorimeter. A linear calibration was obtained in the range of 1–20 mg Fe l−1 with a detection limit of 0.5 mg Fe l−1 and R.S.D.s of 1.4–5.4% (n=3, for 1–20 mg Fe l−1). The new procedure was applied to assay iron contents in pharmaceutical preparations. The results were in good agreement with those of the USP standard method.  相似文献   

2.
Praus P 《Talanta》2004,62(5):977-982
An isotachophoresis (ITP)–capillary zone electrophoresis (CZE) combination was used for the determination of chlorite in drinking waters. No sample preparation is needed and no interfering by other anions in tap water was observed. The reached limits of detection with conductivity detector were 0.012–0.017 mg l−1. By four-fold sample loading with a 30 μl valve, 0.005 mg l−1 of chlorite was determined with R.S.D.=3.3%. The concentrations of 0.05 and 0.20 mg l−1 were measured with R.S.D. of 2.2 and 2.7%, respectively. The recoveries of chlorite from drinking water were 96–106% in the range of 0.02–0.20 mg l−1. The R.S.D. values of migration times (inter-day) were up to 1.3%. The time for analysis is about 15 min.  相似文献   

3.
Hashemi P  Rahmani Z 《Talanta》2006,68(5):1677-1682
Homocystine was for the first time, chemically linked to a highly cross-linked agarose support (Novarose) to be employed as a chelating adsorbent for preconcentration and AAS determination of nickel in table salt and baking soda. Nickel is quantitatively adsorbed on a small column packed with 0.25 ml of the adsorbent, in a pH range of 5.5–6.5 and simply eluted with 5 ml of a 1 mol l−1 hydrochloric acid solution.

A factorial design was used for optimization of the effects of five different variables on the recovery of nickel. The results indicated that the factors of flow rate and column length, and the interactions between pH and sample volume are significant.

In the optimized conditions, the column could tolerate salt concentrations up to 0.5 mol l−1 and sample volumes beyond 500 ml. Matrix ions of Mg2+ and Ca2+, with a concentration of 200 mg l−1, and potentially interfering ions of Cd2+, Cu2+, Zn2+ and Mn2+, with a concentration of 10 mg l−1, did not have significant effect on the analyte's signal. Preconcentration factors up to 100 and a detection limit of 0.49 μg l−1, corresponding to an enrichment volume of 500 ml, were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked nickel in table salt and baking soda solutions resulted in quantitative recoveries. Direct ETAAS determination of nickel in the same samples was not possible because of a high background observed.  相似文献   


4.
A new assay of nucleic acids at nanogram level was established based on the enhanced resonance light scattering (RLS) signals of two zwitterionics cocamidopropyl hydroxysultaine (HSB) and lauryl betaine (BS-12). Under optimum conditions, the weak RLS signal of HSB is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids in the range of 0.02–7.3 mg l−1 for calf thymus DNA and 0.01–8.6 mg l−1 for fish sperm DNA. The detection limits were 1.5 ng ml−1 for calf thymus DNA and 1.9 ng ml−1 for fish sperm DNA. Plasmid DNA extracted from K-12-HB101 colt was determined with satisfactory results.  相似文献   

5.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

6.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

7.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2004,64(5):1119-1126
In this paper, a fully software-controlled multisyringe flow injection (MSFIA) spectrophotometric system is proposed for the determination of sulfide in environmental and waste waters. The implementation of ancillary solenoid valves into the flow network allows a multitude of injection modalities to be explored, the selected modality being directly dependent on the aim of the assays. The multicommuted sandwich-type approach is introduced in this work as an efficient means to warrant high sensitivity for the particular assay with excellent repeatabilities and a considerable reagent saving. Moreover, a high injection frequency may be easily attained by carrying out a multiple injection modality during a single forward displacement of the piston driver bar. The interfacing of the robust and versatile multisyringe piston pump with an optical fiber plug-in spectrophotometer furnished with a light emitting diode enables the miniaturization of the flow analyzer, which is thus readily adaptable to in-situ and real-time monitoring schemes. The flow method is based on the coupling Fischer’s reaction of sulfide with N,N-dimethyl-p-phenylenediamine in the presence of Fe(III) as oxidizing reagent in a 0.7 M HCl medium. Careful selection of the physical and chemical variables enabled coefficients of variations better than 1.5% (n = 10) at the 1 mg l−1 level for both injection modalities. Dynamic working ranges of 0.2–2.0 and 0.5–5 mg l−1 sulfide for sandwich and multiple injection techniques, and detection limits of 0.09 and 0.15 mg l−1, respectively, were obtained. Furthermore, the sandwich modality featured an average slope of 0.43 ± 0.02 l mg−1 calculated from 10 day-to-day calibration plots. This result reveals better sensitivity than other flowing stream methods described in the literature. The multiple injection technique allowed an improvement of the injection throughput up to 80 h−1, although a decrease of sensitivity was concomitantly observed (average slope of 0.17 ± 0.01 l mg−1).

The multisyringe flow method was successfully applied to the determination of sulfide in different spiked water matrices (namely, mineral, tap, freshwater, seawater and wastewater) with recoveries ranging from 96 to 104%. Good agreement was also found in water samples between the MSFIA results and those of the batch APHA-standard method.  相似文献   


8.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

9.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

10.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

11.
Pons C  Miró M  Becerra E  Estela JM  Cerdà V 《Talanta》2004,62(5):887-895
An intelligent and versatile flow system is proposed for the in-line speciation and/or concentration of metal ions at a wide range of concentrations without requiring manifold reconfiguration. On one hand, sample enrichment strategies are accomplished using packed-bed reactors, on the other hand speciation procedures are readily performed exploiting the selective complexation of the different oxidation states with the appropriate chromogenic reagents.

The potentials of the automated methodology were evaluated using the spectrophotometric monitoring of iron as a model of chemistry. Under the optimised physical and chemical variables, linear analytical curves over the ranges 0.025–0.5 or 2.0–40 mg l−1 Fe were attained. The 3σ detection limit, the repeatability at the 0.5 mg l−1 level, the enrichment factor for a sampling volume of 10 ml, and the maximum injection throughput were 8.4 ng ml−1 Fe, 2.5%, 58.6 and 22 h−1, respectively. The flowing system was applied to the speciation analysis of iron in waters, pharmaceutical formulations and agricultural products, using ICP-OES detection as an external reference method for total iron determination.

A remarkable feature of the expert system hereby presented is the ability to decide by itself if the pre-concentration and/or oxidation of the sample zone is required.  相似文献   


12.
A pervaporation flow injection (PFI) method is described for the determination of ammonia in beers. After injecting the sample into a NaOH donor solution, ammonia and other volatiles are transferred in the pervaporation unit from the donor stream to an acceptor stream containing sodium salicylate and nitroprusside, which subsequently mixes with alkaline sodium dichloroisocyanurate to allow the classical Berthelot reaction to take place. The blue-coloured complex formed is monitored spectrophotometrically at 655 nm. A linear calibration curve with a range of 0.1–40 mg l−1 was obtained. The method has a detection limit of 0.05 mg l−1 and is capable of a sampling frequency of 11 h−1 at 4 mg l−1 ammonia. It was applied successfully to the determination of ammonia in synthetic samples and unfiltered lager beers. The advantages of the present method over the ammonia ion-selective electrode method and the PFI system based on mixed indicator detection are discussed.  相似文献   

13.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

14.
By HG-AFS, a new method was proposed for simultaneous determination of total arsenic and total selenium existed in the Chinese medicinal herbs in tartaric acid medium. The effects of analytical conditions and coexisting ions on the fluorescence signal intensity of analytes were investigated. The proposed method was provided with linear response ranges above 22 μg l−1 for As and 44 μg l−1 for Se, and the detection limits of 0.13 and 0.12 μg l−1 were obtained for As and Se respectively. The recoveries of 93.8–96.1% for As and 95.3–99.1% for Se, and the precision of 1.2–3.8% and 2.4–5.3% (R.S.D., n = 8) respectively, were obtained via simultaneous determined four samples of Chinese medicinal herbs and three certified botanic reference materials successfully. The proposed method has the advantages of simple operation, high sensitivity and high efficiency.  相似文献   

15.
van Staden JF  Mulaudzi LV  Stefan RI 《Talanta》2004,64(5):1196-1202
A simple and rapid on-line spectrophotometric method for the determination of bromate is proposed. The method is based on the reaction of bromate and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-bromo-PADAP) with SCN, a red complex is formed and monitored at 550 nm. The linear range found is between 0.18 and 3.00 mg l−1 with a detection limit of 0.15 mg l−1. The sampling rate was calculated to be 45 samples per hour. The proposed method has a precision of less than 0.8%.  相似文献   

16.
In this paper, photoelectro-synergistic catalysis oxidation of organics in the water on Ti/TiO2/PbO2 electrode was investigated. The prepared TiO2 film was investigated with Atomic force micrograph (AFM). Furthermore, the results were compared with those obtained from electrocatalysis (EC) and electro-assisted photocatalysis (PC). The method proposed employed photoelectro-synergistic catalysis (PEC), together with flow injection analysis, to determine the chemical oxygen demand (COD) values. It was shown that the method of photoelectro-synergistic catalysis had lower detection limit (15.0 mg l−1) and wider linear range (30.0–2500.0 mg l−1) than the methods of electro-assisted photocatalysis and electrocatalysis. The results obtained by the proposed method and conventional one were compared by carrying out the experiment on 20 wastewater samples and also agreed well by high correlation (R = 0.9912).  相似文献   

17.
Selective piezoelectric odor sensors using molecularly imprinted polymers   总被引:3,自引:0,他引:3  
Molecular imprinting technique has been used to create sensors with a predetermined selectivity for molecules in the gas phase. Piezoelectric quartz crystals coated with a 2-methylisoborneol (MIB) imprinted polymer gave responses which were consistently 5–10 Hz (1.1–1.3 times) higher than those of sensors coated with a non-imprinted polymer. Geosmin, another tertiary alcohol odorant with an earthy odor resembling, and often accompanying MIB, produced almost equal responses on either imprinted- or non-imprinted sensors. A number of other odorants were examined and their responses to the non-imprinted sensors were found to be similar to or greater than their responses to the imprinted sensors. The responses of MIB to the imprinted sensors were always the highest, while other odorants produced equal or higher responses using the non-imprinted sensor. The sensor has a detection limit of ca. 5 mg l−1 and a dynamic range of at least 1000 mg l−l. When the time taken for the sensor to stabilize is used as the response, instead of the frequency change, the detection limit is lowered to ca. 200 μg l−l.  相似文献   

18.
A novel pervaporation-flow injection (PFI) system for the determination of As(III) in aqueous samples at μg l−1 level is described. The analytical procedure involved stopping the acceptor stream and injecting acidified As(III) samples into a 0.3 M HCl stream which was mixed with a 0.14 M sodium borohydride in 0.025 M NaOH stream. The arsine generated was transported in the pervaporation unit across a semi-permeable membrane (1.5 mm thickness) into the static acceptor solution containing 1.0×10−4 M KMnO4 in 0.1 M H2SO4 where it was oxidised. The acceptor stream was restarted after 6.5 min, and the decrease in permanganate absorbance at 528 nm was monitored to determine the initial concentration of As(III) in the samples. The method is characterised by a linear calibration range from 0.25 to 2000 μg l−1, a detection limit of 0.18 μg l−1 and a sampling frequency of 7 h−1. Samples containing As(V) were pre-treated with KI and HCl prior to injection to reduce As(V) to As(III). The effects of common anionic and cationic interferences, and the elimination of some metallic interferences using -cysteine are discussed. The method was applied to the analysis of environmental waters and the results were in good agreement with hydride generation atomic absorption spectrometric data.  相似文献   

19.
Sözgen K  Cekic SD  Tütem E  Apak R 《Talanta》2006,68(5):1601-1609
Total protein assay was made using copper(II)–neocuproine (Nc) reagent in alkaline medium (with the help of a hydroxide-carbonate-tartarate solution) after 30 min incubation at 40 °C. The absorbance of the reduction product, Cu(I)–Nc complex, was recorded at 450 nm against a reagent blank. The absorptivity of the developed method for bovine serum albumin (BSA) was 0.023 l mg−1 cm−1, greater than that of Lowry assay (0.0098), and much greater than that of Cu(II)–bicinchoninic acid (BCA) assay (0.00077). The linear range of the developed method (8–100 mg l−1 BSA) was as wide as that of Lowry, and much wider than that of BCA (200–1000 mg l−1 BSA) assay. The sensitivity of the method was greater than those of Cu-based assays (biuret, Lowry, and BCA) with a LOD of 1 mg l−1 BSA. The within-run and between-run precisions as RSD were 0.73 and 1.01%, respectively. The selectivity of the proposed method for protein was much higher than those of dye-binding and Lowry assays: Most common interferents to other protein assays such as tris, ethanolamine, deoxycholate, CsCl, citrate, and triton X-100 were tolerated at 100-fold concentrations in the analysis of 10 mg l−1 BSA, while the tolerance limits for other interferents, e.g., (NH4)2SO4 and acetylsalicylic acid (50-fold), SDS (25-fold), and glycerol (20-fold) were at acceptable levels. The redox reaction of Cu(II)–Nc as an outer-sphere electron transfer agent with the peptide bond and with four amino acid residues (cystine, cysteine, tryptophan, and tyrosine) was kinetically more favourable than that of Cu(II) alone in the biuret assay. Since the reduction product of Cu(II) with protein, i.e., Cu(I), was coordinatively saturated with Nc in the stable Cu(Nc)2+ chelate, re-oxidation of the formed Cu(I) with Fenton-like reactions was not possible, thereby preventing a loss of chromophore. After conventional protein extraction, precipitation, and redissolution procedures, the protein contents of the minced meat (veal and turkey), sardine, various milk products, and egg white were analyzed with the proposed and Lowry methods, and the results correlated appreciably (r = 0.98). The method was validated by Kjeldahl analyses of the tested samples; the data sets of complex samples assayed by Cu(II)–Nc and Lowry correlated to the findings of Kjeldahl yielded correlation coefficients r = 0.96 and 0.97, respectively, with slopes being close to 1. Interferences of glucose and thiol compounds at relatively low concentrations could be compensated for by selecting a lower alkaline pH (i.e., pH 10) at a cost of slightly reduced sensitivity and adding an identical amount of interferent to the reagent blank, respectively, since the absorbances due to BSA and interferent were additive. Thus a novel spectrophotometric method for total protein assay using a stable reagent and chromophore, which was simple, rapid, sensitive, flexible, and relatively selective, was developed, and applied to a variety of food products.  相似文献   

20.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号