首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The magnetic susceptibilities of hexanuclear gadolinium clusters in the compounds Gd(Gd6ZI12) (Z = Co, Fe, or Mn) and CsGd(Gd6CoI12)2 are reported and subjected to theoretical analysis with the help of density functional theory (DFT) computations. The single-crystal structure of Gd(Gd6CoI12) is reported here as well. We find that the compound with a closed shell of cluster bonding electrons, Gd(Gd6CoI12), exhibits the effects of antiferromagnetic coupling over the entire range of temperatures measured (4-300 K). Clusters with unpaired, delocalized cluster bonding electrons (CBEs) exhibit enhanced susceptibilities consistent with strong ferromagnetic coupling, except at lower temperatures (less than 30 K) where intercluster antiferromagnetic coupling suppresses the susceptibilities. The presence of two unpaired CBEs, as in [Gd6MnI12]3-, yields stronger coupling than when just one unpaired CBE is present, as in [Gd6FeI12]3- or [Gd6CoI12]2-. DFT calculations on model molecular systems, [Gd6CoI12](OPH3)6 and [Gd6CoI12]2(OPH3)10, indicate that the delocalized cluster bonding electrons are highly effective at mediating intracluster ferromagnetic exchange coupling between the Gd atom 4f7 moments and that intercluster coupling is expected to be antiferromagnetic. The DFT calculations were used to calculate the relative energies of various 4f7 spin patterns and form the basis for construction of a simple spin Hamiltonian describing the coupling within the [Gd6CoI12] cluster.  相似文献   

2.
Single crystals of (Ag3Hg)VO4 (I), (Ag2Hg2)3(VO4)4 (II), AgHgVO4 (III), and (Ag2Hg2)2(HgO2)(AsO4)2 (IV) were grown under hydrothermal conditions (250 degrees C, 5 d) from starting mixtures of elementary mercury, silver nitrate, ammonium vanadate, and disodium hydrogenarsenate, respectively. All crystal structures were determined from X-ray diffraction data, and their chemical compositions were confirmed by electron microprobe analysis. I crystallizes in the tillmannsite structure, whereas II-IV adopt new structure types: (I) I4, Z = 2, a = 7.7095(2) A, c = 4.6714(2) A, 730 structure factors, 24 parameters, R[F2 > 2sigma(F2)] = 0.0365; (II) I42d, Z = 4, a = 12.6295(13) A, c = 12.566(3) A, 1524 structure factors, 55 parameters, R[F2 > 2sigma(F2)] = 0.0508; (III) C2, Z = 4, a = 9.9407(18) A, b = 5.5730(8) A, c = 7.1210(19) A, beta = 94.561(10) degrees , 1129 structure factors, 48 parameters, R[F2 > 2sigma(F2)] = 0.0358; (IV) P31c, Z = 2, a = 6.0261(9) A, c = 21.577(4) A, 1362 structure factors, 52 parameters, R[F2 > 2sigma(F2)] = 0.0477. The most striking structural features of I, II, and IV are the formation of tetrahedral cluster cations (Ag3Hg)3+ and (Ag2Hg2)4+, respectively, built of statistically distributed Ag and Hg atoms with a metal-metal distance of about 2.72 A. The electronic structure of these clusters can formally be considered as two-electron-four-center bonding. The crystal structure of III differs from the protrusive structure types insofar as silver and mercury are located on distinct crystallographic sites without a notable metal-metal interaction >3.55 A. All crystal structures are completed by tetrahedral oxo anions XO4(3-) (X = VV, AsV) and for IV additionally by a mercurate group, HgO2(2-).  相似文献   

3.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

4.
Naruke H  Yamase T 《Inorganic chemistry》2002,41(24):6514-6520
Single crystals of R(2)Mo(5)O(18) and R(6)Mo(12)O(45) (R = Eu and Gd), which are novel compounds in the R(2)O(3)-MoO(3) system, have been obtained by thermal decomposition of [R(2)(H(2)O)(12)Mo(8)O(27)].nH(2)O in air at 750 degrees C for 2 h. TG-DTA and X-ray diffractometry showed that R(2)Mo(5)O(18) crystallizes in a melt of the dehydrated precursor (R(2)Mo(8)O(27)), and R(2)Mo(5)O(18) is transformed to R(6)Mo(12)O(45) in the solid state, both occurring with the loss of MoO(3). R(2)Mo(5)O(18) species crystallize isostructurallyas orthorhombic, Pbcn, Z = 4, with lattice constants of a = 19.2612(7) and 19.246(1) A, b = 9.4618(3) and 9.4414(5) A, c = 9.3779(3) and 9.3446(4) A for R = Eu and Gd, respectively. R(6)Mo(12)O(45) crystallize isostructurally as triclinic P1, Z = 1, with lattice constants of a = 9.3867(4) and 9.3409(3) A, b = 10.9408(5) and 10.8826(5) A, c = 11.4817(5) and 11.4377(5) A, alpha = 104.194(2) degrees and 104.170(1) degrees, beta = 109.567(3) degrees and 109.288(4) degrees, gamma = 108.998(2) degrees and 109.266(2) degrees for R = Eu and Gd, respectively. Both structures consist of [RO(8)] square-antiprisms and [MoO(n)] polyhedra. In R(2)Mo(5)O(18), an [RO(8)] polyhedron is attached by only molybdate groups, being isolated from adjacent [RO(8)] groups. The 12 nearest R atoms surrounding an R atom with R...R distances of 6.0735(4)-7.0389(4) A form an approximate cuboctahedron. All the [RO(8)] square-antiprisms in R(6)Mo(12)O(45) are connected to each other by face-sharing to form dimeric [R(2)O(13)] and [R(2)O(12)] groups. The latter unusual [R(2)O(12)] group is achieved by sharing a square-face via four bridging O atoms with a very short R...R separation (3.4741(7) and 3.4502(6) A for R = Eu and Gd, respectively).  相似文献   

5.
The compounds Cp2Ln[N(QPPh2)2] (Ln = La (1), Gd (2), Er (3), or Yb (4) for Q = Se, Ln = Yb (5) for Q = S) have been synthesized from the corresponding rare-earth tris(cyclopentadienyl) compound and H[N(QPPh2)2]. The structures of compounds 1, 2, 3, and 5, as determined by X-ray crystallography, consist of a Cp2Ln fragment, coordinated eta 3 through two chalcogen atoms and an N atom of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]-. In compound 4, the Cp2Yb moiety is coordinated eta 2 through the two Se atoms of the [N(SePPh2)2]-ligand. 31P and 77Se (for 1) NMR spectroscopies lend insight into the solution nature of these species. Crystal data: 1, C34H30LaNP2Se2, triclinic, P1, a = 9.7959(10) A, b = 12.4134(13) A, c = 13.9077(14) A, alpha = 88.106(2) degrees, beta = 88.327(2) degrees, gamma = 68.481(2) degrees, V = 1572.2(3) A3, T = 153 K, Z = 2, and R1(F) = 0.0257 for the 5947 reflections with I > .2 sigma(I); 2, C34H30GdNP2Se2, triclinic, P1, a = 9.7130(14) A, b = 12.2659(17) A, c = 13.953(2) A, alpha = 88.062(2) degrees, beta = 87.613(2) degrees, gamma = 69.041(2) degrees, V = 1550.7(4) A3, T = 153 K, Z = 2, and R1(F) = 0.0323 for the 5064 reflections with I > 2 sigma(I); 3, C34H30ErNP2Se2, triclinic, P1, a = 9.704(2) A, b = 12.222(3) A, c = 13.980(4) A, alpha = 88.230(4) degrees, beta = 87.487(4) degees, gamma = 69.107(4) degrees, V = 1547.4(7) A3, T = 153 K, Z = 2, and R1(F) = 0.0278 for the 6377 reflections with I > 2 sigma(I); 4, C34H30NP2Se2Yb.C4H8O, triclinic, P1, a = 12.087(4) A, b = 12.429(4) A, c = 23.990(7) A, alpha = 89.406(5) degrees, beta = 86.368(5) degrees, gamma = 81.664(5) degrees, V = 3558.8(18) A3, T = 153 K, Z = 4, and R1(F) = 0.0321 for the 11,883 reflections with I > 2 sigma(I); and 5, C34H30NP2S2Yb, monoclinic, P21/n, a = 13.8799(18) A, b = 12.6747(16) A, c = 17.180(2) A, beta = 91.102(3) degrees, V = 3021.8(7) A3, T = 153 K, Z = 4, and R1(F) = 0.0218 for the 6698 reflections with I > 2 sigma(I).  相似文献   

6.
An example of a direct axial interaction of a platinum(II) atom with a Mo(2) core through a uniquely designed tridentate ligand 6-(diphenylphosphino)-2-pyridonate (abbreviated as pyphos) is described. Treatment of PtX(2)(pyphosH)(2) (2a, X = Cl; 2b, X = Br; 2c, X = I) with a 1:1 mixture of Mo(2)(O(2)CCH(3))(4) and [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](2+) (3a) in dichloromethane afforded the linear trinuclear complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCH(3))(2)](2) (4a, X = Cl; 4b, X = Br; 4c, X = I). The reaction of [Mo(2)(O(2)CCMe(3))(2)(NCCH(3))(4)](2+) (3b) with 2a-c in dichloromethane afforded the corresponding pivalato complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCMe(3))(2)](2) (5a, X = Cl; 5b, X = Br; 5c, X = I), whose bonding nature is discussed on the basis of the data from Raman and electronic spectra as well as cyclic voltammograms. The linear trinuclear structures in 4b and 5a-c were confirmed by NMR studies and X-ray analyses: 4b, monoclinic, space group C2/c, a = 34.733(4) ?, b = 17.81(1) ?, c = 22.530(5) ?, beta = 124.444(8) degrees, V = 11498(5) ?(3), Z = 8, R = 0.060 for 8659 reflections with I > 3sigma(I) and 588 parameters; 5a, triclinic, space group P&onemacr;, a = 13.541(3) ?, b = 17.029(3) ?, c = 12.896(3) ?, alpha = 101.20(2) degrees, beta = 117.00(1) degrees, gamma = 85.47(2) degrees, V = 2599(1) ?(3), Z = 2, R = 0.050 for 8148 reflections with I > 3sigma(I) and 604 parameters; 5b, triclinic, space group P&onemacr;, a = 12.211(2) ?, b = 20.859(3) ?, c = 10.478(2) ?, alpha = 98.88(1) degrees, beta = 112.55(2) degrees, gamma = 84.56(1) degrees, V = 2433.3(8) ?(3), Z = 2, R = 0.042 for 8935 reflections with I > 3sigma(I) and 560 parameters; 5c, monoclinic, space group P2(1)/n, a = 13.359(4) ?, b = 19.686(3) ?, c = 20.392(4) ?, beta = 107.92(2) degrees, V = 5101(2) ?(3), Z = 4, R = 0.039 for 8432 reflections with I > 3sigma(I) and 560 parameters.  相似文献   

7.
The rare-earth tricyanomelaminates, [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O (LnTCM; Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), have been synthesized through ion-exchange reactions. They have been characterized by powder as well as single-crystal X-ray diffraction analysis, vibrational spectroscopy, and solid-state (1)H, (13)C, and (15)N MAS NMR spectroscopy. The X-ray powder pattern common to all nine rare-earth tricyanomelaminates LnTCM (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) indicates that they are isostructural. The single-crystal X-ray diffraction pattern of LnTCM is indicative of non-merohedral twinning. The crystals are triclinic and separation of the twin domains as well as refinement of the structure were successfully carried out in the space group P1 for LaTCM (LaTCM; P1, Z=2, a=7.1014(14), b=13.194(3), c=13.803(3) A, alpha=90.11(3), beta=77.85(3), gamma=87.23(3) degrees , V=1262.8(4) A(3)). In the crystal structure, each Ln(3+) is surrounded by two nitrogen atoms from two crystallographically independent tricyanomelaminate moieties and seven oxygen atoms from crystal water molecules. The positions of all of the hydrogen atoms of the ammonium ions and water molecules could not be located from difference Fourier syntheses. The presence of [NH(4)](+) ions as well as two NH groups belonging to two crystallographically independent monoprotonated tricyanomelaminate moieties has only been confirmed by subjecting LaTCM to solid-state (1)H, (13)C, and (15)N{(1)H} cross-polarization (CP) MAS NMR and advanced CP experiments such as cross-polarization combined with polarization inversion (CPPI). The (1)H 2D double-quantum single-quantum homonuclear correlation (DQ SQ) spectrum and the (15)N{(1)H} 2D CP heteronuclear-correlation (HETCOR) spectrum have revealed the hydrogen-bonded (N--HN) dimer of monoprotonated tricyanomelaminate moieties as well as H-bonding through [NH(4)](+) ions and H(2)O molecules. The structures of the other eight rare-earth tricyanomelaminates (LnTCM; Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) have been refined from X-ray powder diffraction data by the Rietveld method. Photoluminescence studies of [NH(4)]Eu[HC(6)N(9)](2)[H(2)O](7)xH(2)O have revealed orange-red (lambda(max)=615 nm) emission due to the (5)D(0)-(7)F(2) transition, whereas [NH(4)]Tb[HC(6)N(9)](2)[H(2)O](7)xH(2)O has been found to show green emission with a maximum at 545 nm arising from the (5)D(4)-(7)F(5) transition. DTA/TG studies of [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O have indicated several phase transitions associated with dehydration of the compounds above 150 degrees C and decomposition above 200 degrees C.  相似文献   

8.
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes.  相似文献   

9.
1 INTRODUCTION The design and synthesis of polynuclear com- plexes have attracted chemists?attention in the contemporary chemistry, since their clusters maybe lead to novel materials with magnetic, optical, electronic and catalytic properties of the constituent metals[1~3]. It is also prevalently interesting to synthesize high-nuclearity metal complexes for their nanoscopic dimensions[3, 4]. Spectroscopic properties of the lanthanides are widely used in the study of biological systems. …  相似文献   

10.
镧系含杂环胺三元配合物的研究从六十年代至今已进行了大量探索 ,但四元配合物的研究一直不多 ,并且由于联吡啶 (Bipy)的配位能力相对较弱 ,有关其四元配合物的研究报道更为少见[1~ 3] 。我们探索合成了 [Ln(C6 H5COO) 2 (NO3)(Bipy) ]2 ,且在合成过程中首次观察到了热力学与动力学竞争的现象。1 实验部分1 1 试剂和仪器稀土氧化物纯度超过 99.99% (上海跃龙有色金属有限公司 ) ,其余试剂均为分析纯。CarloErba 1 1 0 6型元素分析仪 ;DDS 1 1A型电导率仪 (1 .0× 1 0 -3mol·L-1DMF) ;日本岛津 47…  相似文献   

11.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

12.
The reaction of copper(I) iodide with 1, 3-imidazolidine-2-thione (SC3H6N2) in a 1:2 molar ratio (M/L) has formed unusual 1D polymers, {Cu6(mu3-SC3H6N2)4(mu-SC3H6N2)2(mu-I)2I4}n (1) and {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-I)4I2}n (1a). A similar reaction with copper(I) bromide has formed a polymer {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-Br)4Br2}n (3a), similar to 1a, along with a dimer, {Cu2(mu-SC3H6N2)2(eta1-SC3H6N2)2Br2} (3). Copper(I) chloride behaved differently, and only an unsymmetrical dimer, {Cu2(mu-SC3H6N2)(eta1-SC3H6N2)3Cl2} (4), was formed. Finally, reactions of copper(I) thiocyanate in 1:1 or 1:2 molar ratios yielded a 3D polymer, {Cu2(mu-SC3H6N2)2(mu-SCN)2}n (2). Crystal data: 1, C9H18Cu3I3N6S3, triclinic, P, a = 9.6646(11) A, b = 10.5520(13) A, c = 12.6177(15) A, alpha = 107.239(2) degrees , beta = 99.844(2) degrees , gamma = 113.682(2) degrees , V = 1061.8(2) A(3), Z = 2, R = 0.0333; 2, C(4)H(6)CuN(3)S(2), monoclinic, P2(1)/c, a = 7.864(3) A, b = 14.328(6) A, c = 6.737(2) A, beta = 100.07(3) degrees , V = 747.4(5), Z = 4, R = 0.0363; 3, C12H24Br2Cu2N8S4, monoclinic, C2/c, a = 19.420(7) A, b = 7.686(3) A, c = 16.706(6) A, beta = 115.844(6) degrees , V = 2244.1(14) A(3), Z = 4, R = 0.0228; 4, C12H24Cl2Cu2N8S4, monoclinic, P2(1)/c, a = 7.4500(6) A, b = 18.4965(15) A, c = 16.2131(14) A, beta = 95.036(2) degrees , V = 2225.5(3) A(3), Z = 4, R = 0.0392. The 3D polymer 2 exhibits 20-membered metallacyclic rings in its structure, while synthesis of linear polymers, 1 and 1a, represents an unusual example of I (1a)-S (1) bond isomerism.  相似文献   

13.
[Ce(NR(2))(3)] (R = SiMe(3)) with TeCl(4) in tetrahydrofuran solution gave a mixture of two major products in a combined yield of ca. 50% based on available metal: (i) the Ce(IV) amide [CeCl(NR(2))(3)] (1), which was isolated as purple needles and identified on the basis of (1)H NMR and mass spectra, microanalysis, and a single-crystal X-ray analysis [C(18)H(54)CeClN(3)Si(6), rhombohedral, R3c (No. 161), a = b = 18.4508(7) A, c = 16.8934(7) A, Z = 6]; (ii) unstable [[Ce(NR(2))(2)(mu-Cl)(thf)](2)] (2), as colorless blocks [C(32)H(88)Ce(2)Cl(2)N(4)O(2)Si(8), monoclinic, P2(1)/n (No. 14), a = 14.506(3) A, b = 13.065(3) A, c = 16.779(3) A, beta = 113.789(12) degrees, Z = 2], which readily disproportionated in solution. In toluene solution, the product 1 was obtained exclusively. The same cerium(III) amide starting material was oxidized by PBr(2)Ph(3) in diethyl ether solution to give purple [CeBr(NR(2))(3)] (3) [C(18)H(54)BrCeN(3)Si(6), rhombohedral, R3c (No. 161), a = b = 18.4113(12) A, c = 16.9631(17) A, Z = 6], along with presumed [CeBr(3)(OEt(2))(n)()], which has not been characterized but with thf, by displacement of the ether ligands, gave [CeBr(3)(thf)(4)] (4) [C(16)H(32)Br(3)CeO(4), triclinic, P1 (No. 2), a = 8.2536(7) A, b = 9.4157(5) A, c = 15.5935(14) A, alpha = 79.009(5), beta = 87.290(3) degrees, gamma = 74.835(5) degrees, Z = 2). TeBr(4) reacted with [Ce(NR(2))(3)] in thf to give small amounts of 3; the major product (although only formed in 15% yield) was monomeric [CeBr(2)(NR(2))(thf)(3)] (5) [C(18)H(42)Br(2)CeNO(3)Si(2), monoclinic, P2(1)/c (No. 14), a = 14.9421(4) A, b = 11.8134(5) A, c = 15.8317(7) A, alpha = gamma = 120 degrees, beta = 92.185(3) degrees, Z = 4].  相似文献   

14.
池利生  陈华阳 《结构化学》1998,17(4):297-301
1INTRODUCTIONRareearthborosilicateshaverarelybeenreportedinthepastdecade.LnBMO5(M=Ge,Si)(l,z,31exhibitsthestillwellitestructureonlyforlargerlanthanide,initsstructure,twoBO'tetrahedraandoneSiO'tetrahedronareconnectedbycorner-sharedeachothertoformsix-memberringthatconstructinfinitehelicalchainsparal-lelto3lscrewaxis-Serhanetal(43synthesizedNd,BM2O,,(M=Si Ge)whosestructurecontainstri-coordinatedboronatoms.Recently,wehavesynthesizedSm3BSi2O1,andEu,BSi,O,,t"6),herewerffportthesynthes…  相似文献   

15.
林观阳  金钟声 《结构化学》1991,10(3):192-195
<正> By X-ray (λ=0. 71069A) diffraction of single crystal,we have determined the crystal structure of C6H5GdCl2 (THF)4,C22H37Cl2O4Gd, MT=593. 2,or-thorhombic space group Ccm2;with lattice parameters a=12. 776(6),b=12. 954(6), c=15. 802(3)A ;V=2615. 4(1. 8)A3;Z=4,Dc=2. 43gcm-3,μ=29. 3cm-1,F(000) = 1120. The structure was solved by heavy-atom method and Fourier techniques and refined by least-squares to a final R=0. 051 ,Rw = 0. 049 for 839 reflections with I≥1. 5σ (I). The results revealed that the bond length of Gd-C is 2. 437(22) A ,the average bond lengths of Gd-Cl 2. 678(6) A ,Gd-O 2. 499(12) A, C-C from phenyl group 1. 376(40)A. This crystal structure is the first organolanthanide complex with only one Ln-C bond in the molecule.  相似文献   

16.
1 INTRODUCTION With the increasing interest in diode-pumped solid state lasers, researches on more efficient new materials for diode pumping become more important. The double borates are a type of excellent laser gain media, for example, Nd3 -doped RAl…  相似文献   

17.
Yu RM  Lu SF  Huang JQ  Huang XY  Wu QJ  Wu DX 《Inorganic chemistry》2000,39(23):5348-5353
Three heterometallic cubane-like clusters, [Mo3(mu 3-O)(mu 3-S)3(SnCl3)(dtp)3(py)3] (dtp = S2P(OC2H5)2-, py = C5H5N) (1), (PPN)[Mo3(mu 3-O)(mu 3-S)3(SnCl3)(dtp)3(mu-OAc)(py)] (OAc = CH3COO-, PPN = (C6H5)3PNP(C6H5)3+) (2), and (Et4N)[Mo3(mu 3-O)(mu 3-S)3(SnCl3)(dtp)2(mu-OAc)2(py)] (3) have been prepared by the reaction of [Mo3(mu 3-O)-(mu-S)3(dtp)4(H2O)] (4), [Mo3(mu 3-O)(mu-S)3(dtp)3(OAc) (py)] (5), and [Mo3(mu 3-O)(mu-S)3(dtp)2(OAc)2 (py)] (6) with SnCl2, respectively. They have been characterized by IR, UV-vis, 31P NMR, 95Mo NMR, and X-ray structure analysis. All of these heterometallic clusters have a [Mo3OS3Sn]6+ core but contain a different arrangement of peripheral ligands. As far as the neutral cluster 1 is concerned, there is no bridging OAc ligand, while only one bridging OAc ligand is observed for cluster 2 and two are for cluster 3. The Mo-Mo distances are about 0.03-0.04 A shorter than those of the starting trimolybdenum clusters. This indicates that the incorporation of SnCl3- fragment into (Mo3) clusters makes the Mo-Mo bonding enhanced. Crystal data for 1: triclinic, space group P-1, a = 10.7423(2) A, b = 14.0357(1) A, c = 16.9346(2) A, alpha = 84.054(1) degrees, beta = 87.095(1) degrees, gamma = 84.517(1) degrees, V = 2525.82(6) A3, Z = 2, R = 0.038 for 5584 reflections (I > 2.0 sigma(I)). Crystal data for 2: triclinic, space group P-1, a = 12.9529(1) A, b = 15.6324(2) A, c = 19.6355(1) A, alpha = 92.083(1) degrees, beta = 97.908(1) degrees, gamma = 110.337(1) degrees, V = 3677.41(6) A3, Z = 2, R = 0.034 for 8665 reflections (I > 2.0 sigma(I)). Crystal data for 3: monoclinic, space group P2(1)/n, a = 14.0852(5) A, b = 15.1324(5) A, c = 23.2691(7) A, beta = 97.371(1) degrees, V = 4918.7(3) A3, Z = 4, R = 0.049 for 4970 reflections (I > 2.0 sigma(I)).  相似文献   

18.
Imide transfer properties of ((THF)MgNPh)(6) (1) and the synthesis of the related species {(THF)MgN(1-naphthyl)}(6).2.25THF (2), via the reaction of dibutylmagnesium with H(2)N(1-naphthyl), in a THF/heptane mixture are described. Treatment of 1 with Ph(2)CO, 4-Me(2)NC(6)H(4)NO, t-BuNBr(2) (3), PCl(3), or MesPCl(2) (Mes = 2,4,6-Me(3)C(6)H(2)-) leads to the isolation of Ph(2)CNPh (4), 4-Me(2)NC(6)H(4)NNPh (5), t-BuNNPh (6), (PhNPCl)(2) (7), or (MesPNPh)(2) (8) in moderate yield. Reaction between 1 and GeCl(2).dioxane, SnCl(2), or PbCl(2) affords the M(4)N(4) (M = Ge, Sn, Pb) cubane imide derivative (GeNPh)(4) (9), [(SnNPh)(4).{MgCl(2)(THF)(4)}](infinity) (10), (SnNPh)(4).0.5PhMe (11), or (PbNPh)(4).0.5PhMe (12). Interaction of 1 with Ph(3)PO, (Me(2)N)(3)PO, or Ph(2)SO furnishes the complex (Ph(3)POMgNPh)(6) (13), {(Me(2)N)(3)POMgNPh}(6).2PhMe (14), or (Ph(2)SOMgNPh)(6) (15). The addition of 3 equiv of MgBr(2) to 1 gives 1.5 equiv of ((THF)Mg)(6)(NPh)(4)Br(4) (16) in quantitative yield, whereas treatment of 16 with 4 equiv of 1,4-dioxane is an alternative synthetic route to 1. Compounds 2, 3, 9, 10, and 14 were characterized by X-ray crystallography. The reactions demonstrate that 1 is a versatile and useful reagent for the synthesis of a variety of main group imides. Crystal data at 130 K with Mo Kalpha (lambda = 0.710 73 ?) radiation for 3 or Cu Kalpha (lambda = 1.541 78 ?) radiation for 2, 9, 10, and 14: 2, C(93)H(108)Mg(6)N(6)O(7.25), a = 28.101(7) ?, b = 35.851(7) ?, c = 36.816(7) ?, Z = 2, space group Fddd, R = 0.068 for 3500 (I > 2sigma(I)) data; 3, C(4)H(9)Br(2)N, a = 6.682(2) ?, b = 10.834(3) ?, c = 11.080(3) ?, alpha = 66.25(2) degrees, beta = 89.88(2) degrees, gamma = 82.53(2) degrees, Z = 4, space group P&onemacr;, R = 0.038 for 2043 (I > 2sigma(I)) data; 9, C(24)H(20)Ge(4)N(4), a = 10.749(2) ?, b = 12.358(3) ?, c = 35.818(7) ?, Z = 8, space group Pbca, R = 0.040 for 2981 (I > 2sigma(I)) data; 10, C(40)H(52)Cl(2)MgN(4)O(4)Sn(4), a = 12.770(3) ?, b = 13.554(3) ?, c = 25.839(5) ?, Z = 4, space group P2(1)2(1)2(1), R = 0.040 for (I > 2sigma(I)) data; 14, C(86)H(154)Mg(6)N(4)O(6)P(6), a = 22.478(4) ?, b = 16.339(3) ?, c = 29.387(6) ?, Z = 4, space group Pbcn, R = 0.081 for 4696 (I >2sigma(I)) data.  相似文献   

19.
The structural characterization of two new sodium phenolate complexes, containing ortho-amino substituents, enables the influence of intramolecular coordination on the aggregation of sodium phenolate complexes to be determined. Crystals of hexameric [NaOC(6)H(4)(CH(2)NMe(2))-2](6) (1a) are monoclinic, space group P2(1)/c, with a = 11.668(4) ?, b = 18.146(4) ?, c = 14.221(5) ?, beta = 110.76(3) ?, V = 2815.5(16) ?(3), and Z = 2; R = 0.0736 for 2051 reflections with I > 2.0sigma(I). Complex 1a contains a unique Na(6)O(6) core, consisting of two face-fused cubes, with the ortho-amino substituent of each phenolate coordinating to a sodium atom. In addition, two of the phenolate ligands have an eta(2)-arene interaction with an additional sodium atom in the core. Crystals of dimeric [(NaOC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4)(HOC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4)](2) (2b) are triclinic, space group P&onemacr;, with a = 10.0670(8) ?, b = 10.7121(7) ?, c = 27.131(3) ?, alpha = 92.176(8) degrees, beta = 99.928(8) degrees, gamma = 106.465(6) degrees, V = 2752.1(4) ?(3), and Z = 2; R = 0.0766 for 5329 reflections with I > 2.0sigma(I). Dimeric complex 2b contains two phenolate ligands, which bridge the two sodium atoms, each coordinating with one ortho-amino substituent to a sodium atom, while the second available ortho-amino substituent remains pendant. The coordination sphere of each sodium atom is completed by a (neutral) bidentate O,N-coordinated parent phenol molecule. The second ortho-amino substituent of this neutral phenol is involved in a hydrogen bridge with its acidic hydrogen. On the basis of these two new crystal structures and previously reported solid state structures for sodium phenolate complexes, it is shown that the introduction of first one and then two ortho-amino substituents into the phenolate ligands successively lowers the degree of association of these complexes in the solid state. In this process, the basic Na(2)O(2) building block of the molecular structures remains intact.  相似文献   

20.
A convenient and one-pot synthetic method of lanthanide thiolate compounds was developed. An excess of metallic samarium, europium, and ytterbium directly reacted with diaryl disulfides in THF to give selectively Ln(II) thiolate complexes, [Ln(SAr)(&mgr;-SAr)(thf)(3)](2) (1, Ln = Sm; 2, Ln = Eu; Ar = 2,4,6-triisopropylphenyl), Yb(SAr)(2)(py)(4) (3, py = pyridine), and [{Ln(hmpa)(3)}(2)(&mgr;-SPh)(3)][SPh] (6, Ln = Sm; 7, Ln = Eu; 8, Ln = Yb; hmpa = hexamethylphosphoric triamide). Reaction of metallic lanthanides with 3 equiv of disulfides afforded Ln(III) thiolate complexes, Ln(SAr)(3)(py)(n)()(thf)(3)(-)(n)() (9a, Ln = Sm, n = 3; 9b, Ln = Sm, n = 2; 10, Ln = Yb, n = 3) and Ln(SPh)(3)(hmpa)(3) (11, Ln = Sm; 12, Ln = Eu; 13, Ln = Yb). Thus, Ln(II) and Ln(III) thiolate complexes were prepared from the same source by controlling the stoichiometry of the reactants. X-ray analysis of 8 revealed that 8 has the first ionic structure composed of triply bridged dinuclear cation and benezenethiolate anion [8, orthorhombic, space group P2(1)2(1)2(1) with a = 21.057(9), b = 25.963(7), c = 16.442(8) ?, V = 8988(5) ?(3), Z = 4, R = 0.040, R(w) = 0.039 for 5848 reflections with I > 3sigma(I) and 865 parameters]. The monomeric structures of 11 and 13 were revealed by X-ray crystallographic studies [11, triclinic, space group P&onemacr; with a = 14.719(3), b = 17.989(2), c = 11.344(2) ?, alpha = 97.91(1), beta = 110.30(2), gamma = 78.40(1) degrees, V = 2751.9(9) ?(3), Z = 2, R = 0.045, R(w) = 0.041 for 7111 reflections with I > 3sigma(I) and 536 parameters; 13, triclinic, space group P&onemacr; with a = 14.565(2), b = 17.961(2), c = 11.302(1) ?, alpha = 97.72(1), beta = 110.49(1), gamma = 78.37(1) degrees, V = 2706.0(7) ?(3), Z = 2, R = 0.031, R(w) = 0.035 for 9837 reflections with I > 3sigma(I) and 536 parameters]. A comparison with the reported mononuclear and dinuclear lanthanide thiolate complexes has been made to indicate that the Ln-S bonds weakened by the coordination of HMPA to lanthanide metals have ionic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号