首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Polycrystalline Pb1−x Sr x (Fe0.012Ti0.988)O3 (0.2≤x≤0.4) (PSFT) thin films have been grown on fused quartz substrates by metallo-organic decomposition technique. The grown films were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), source meter and UV–Vis–NIR spectrophotometer to determine the structural, microstructural, dc resistivity and optical properties. The XRD pattern confirmed that the PSFT films has distorted tetragonal single phase, which close to cubic at higher Sr concentration. AFM analysis revealed that the grains size reduces with increasing Sr concentration and their average values lies in the range of 26–9 nm. The higher values of dc resistivity of PSFT nano grains indicate that the transmission of light occurs within these grains up to short wavelength. The refractive index and the extinction coefficient were determined from the optical transmission spectrum in the wavelength range of 200–1100 nm and compared with that theoretically calculated, when fitted to a single oscillator model. The values of optical band gap were determined from Tauc’s extrapolation fitting and suggests that the transformation of electrons during transmission of light through local states within Fermi gap.  相似文献   

2.
ZnO buffer layers have been used to fabricate GaN thin films by using pulsed laser deposition on Si (111) substrates. c-axis GaN thin films were obtained by annealing in NH3 atmosphere at 950°C for 15 min. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) have been used for the characterizations of the crystalline quality, composition, and surface morphology of the films. The annealing in ammonia (NH3) atmosphere markedly affects the preparation of GaN films and the least annealing time is 15 min under our experimental conditions. The mechanism of the effects of the ZnO buffer layers was studied. In the beginning, Zn–O bonds are destroyed in the interface of the films; a few O and Zn atoms depart from their positions, while N and Ga atoms fill in the empty positions and form a hexagonal structure of a special component. Many bonds (such as Ga–O bonds, Zn–N bonds) existed then. The number of Zn–O bonds decreases and the number of Ga–N bonds increases in the films with increasing of the annealing time. Many other bonds (such as Ga–O bonds, Zn–N bonds) also decreased and more Ga–N bonds formed with annealing time increasing. After having been annealed for 15 min under our experimental conditions, the quality of the hexagonal structure GaN films was markedly improved by the destroying of the Zn–O bonds during high-temperature annealing.  相似文献   

3.
In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO2 thin films post annealed at different temperatures in Ar + H2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was found that the gold nanoparticles had a tendency to accumulate on surface of the heat-treated films in the metallic state. AFM images showed that the nanoparticles were uniformly distributed on the film surface with grain size of about 30 nm. Using XRD analysis average crystalline size of the Au particles was estimated to about 20 nm.  相似文献   

4.
In this paper, we report on the pulsed laser deposition of epitaxial (0002) oriented Zn1−x Mg x O thin films onto (0001) sapphire substrate in O2 ambient at different deposition temperatures. Pulsed laser deposited Zn1−x Mg x O films showed (0002) oriented hexagonal wurtzite structure up to 34% of Mg concentration. The bandgap of Zn1−x Mg x O thin films is successfully tuned from 3.3 to 4.2 eV by adjusting the Mg concentration x=0.0 to x=0.34. Pulsed laser deposited Zn1−x Mg x O thin films were characterized by XRD, AFM, SEM, PL and UV–VIS spectrometer. We have also studied the effect of deposition temperature on to the structure, surface morphology and optical properties of Zn1−x Mg x O thin films.  相似文献   

5.
This article investigated sorption of toxic and carcinogenic arsenate (AsO4 3−) ions on positively charged surface of amorphous and nano crystalline MgFe-layered double hydroxides (LDHs). Based on Brunauer–Emmett–Teller (BET) and Transmission Electron Microscopy (TEM), average size, and specific surface area of nano crystalline MgFe-LDHs, which was about range of about 50–200 nm and 90.2 m2/g, was lower and higher when compared to them of amorphous MgFe-LDHs, respectively. In addition, X-ray diffraction (XRD) peak and point of zero charge (PZC) of crystalline MgFe-LDHs was higher intensity and same, respectively, when compared to that of nano crystalline FeMg-LDHs. Adsorption rate of arsenate on amorphous MgFe-LDHs was a little faster when compared to that of nano crystalline MgFe-LDHs. In addition, as pH decreased, adsorption amount of arsenate on amorphous MgFe-LDHs increased significantly when compared to that of nano crystalline MgFe-LDHs. These results indicate that mechanism of arsenate in two materials was significantly different. We investigate sorption characteristic at pH 5, based on XRD and Fourier-transformed infrared (FTIR). In amorphous MgFe-LDHs, ferric arsenate precipitate was formed on surface of amorphous MgFe-LDHs and constituted the predominant surface arsenate. However, in nano crystalline MgFe-LDHs, arsenate was dominantly sorbed as a “non-surface-complexed” As–O bond on surface and anion exchange in interlayer.  相似文献   

6.
The microstructural (XRD and SEM) and dielectric behavior of Pb(Zr0.54Ti0.46)O3 (PZT 54/46) ceramic system with donor (La, Nb and La+Nb) doping was studied. For all Nb-doped PZT samples, only one (tetragonal) phase was found, which confirms the compositional shifts near the morphotropic phase boundary. For La- and La+Nb-doped samples, there are two (rhombohedral and tetragonal) phases. Dielectric characteristic behavior (1/ε) for La- and La+Nb-doped PZT was associated with two-phase transitions: Ferro–Ferro at low temperature and Ferro–Para at Curie temperature. For Nb-doped samples, only one phase transition is observed, which indicates the presence of a single ferroelectric phase.  相似文献   

7.
Nanocrystalline CaCu3Ti4O12 powders were synthesized by a simple PVA sol–gel route and calcined at 700 and 800°C in air for 8 h. The diameter of the powders ranges from 40–100 nm. The calcined CaCu3Ti4O12 powders were characterized by TG-DTA, XRD, FTIR, SEM, and TEM. Sintering of the powders was conducted in air at 1100°C for 16 h. The XRD results indicated that all sintered samples had a typical perovskite CaCu3Ti4O12 structure although the sintered samples contained some amount of CaTiO3. SEM of the sintered CaCu3Ti4O12 ceramics showed the average grain sizes of 13–15 μm. The samples exhibit a giant dielectric constant, ε′∼105 at 150 to 200°C with weak temperature dependence below 1 kHz in the sample sintered using the powders calcined at 700°C. The Maxwell–Wagner polarization mechanism is used to explain the high permittivity in these ceramics. It is also found that all sintered samples have the same activation energy of grains, which is ∼0.122 eV.  相似文献   

8.
Zinc oxide and titanium dioxide composite thin films were prepared on Corning 7059 glass substrates by co-sputtering. The reactive gas-surroundings used was ultrahigh purity oxygen. To analyze the structural, optical and photocatalytic properties of the ZnO?CTiO2 samples, X-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption, Raman spectroscopy and methylene blue bleaching were carried out at room temperature. XRD patterns indicate the presence of TiO2 (anatase and rutile phases), ZnO, ZnTiO3, and Zn2TiO4 crystalline structures. AFM images allow the observation of non-homogeneous surface in the ZnO?CTiO2 system, suggesting the separation of different crystalline phases in the composite. Raman studies exhibit different spectra in the films depending on the area analyzed, which can be interpreted as a result of the existence of well separated crystalline regions as seen in AFM images. The photocatalytic activity (PA) of TiO2?CZnO?CZnTiO3?CZn2TiO4 composite, as expected for adequate coupling semiconductors, is larger than PA of ZnO and TiO2 oxides, used as references. A simple proposal about the probable alignment of the conduction band, the valence band, and the Fermi level is included.  相似文献   

9.
This study reports the new and simple synthesis of magnetic La0.7Sr0.3MnO3 (LSMO) nanoparticles by thermal decomposition method using acetate salts of La, Sr and Mn as starting materials. To obtain the LSMO nanoparticles, thermal decomposition of the precursor is carried out at the temperatures of 600, 700, 800, 900, and 1000°C for 6 hours. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM and SEM. Structural characterization shows that the prepared particles consisted of two phases of LaMnO3 (LMO) and LSMO with crystallite sizes ranging from 18 to 55 nm. All the prepared samples have a perovskite structure which changes from cubic to rhombohedral with the increase in the thermal decomposition temperature. Basic magnetic characteristics such as saturation magnetization (M S) and coercive field (H C) are evaluated by sample vibrating magnetometry at room temperature (20°C). The samples show soft ferromagnetic behavior with M S values of ∼9–55 emu/g and H C values of ∼8–37 Oe, depending on the crystallite size and thermal decomposition temperature. The relationship between the crystallite size and the magnetic properties is presented and discussed. The cytotoxicity of synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result showed that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extraction of LSMO nanoparticles.  相似文献   

10.
A series of stoichiometric and nonstoichiometric copper–chalcogenide nanocrystallines with different morphologies, e.g., extremely high aspect ratio nanofibers (Cu9S8), tubular structure (Cu x S (x=∼1.86–1.96), nanorods (CuS, Cu31S16), platelets (β-CuSe, Cu3Se2), rope-like Cu3Se2, as well as spherical nanoparticles (Cu7Se4, Cu2−x Se), have been successfully synthesized in 20 vol% water and 80 vol% organic solvents mixture under mild conditions. The products were characterized by various techniques, including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electronic diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). The studies of the optical properties revealed that the copper chalcogenides have a wide absorption in the range of about 400–700 nm, with accessional IR band. Systematic studies showed that the mixture of 20 vol% water and 80 vol% organic solvents played a key role in controlling the copper chalcogenides with different morphologies and phases.  相似文献   

11.
Polycrystalline samples of Pr1−x Sr x Fe0.8Co0.2 O3−δ (x=0.1, 0.2, 0.3) (PSFC) were prepared by the combustion synthesis route at 1200°C. The structure of the polycrystalline powders was analysed with X-ray powder diffraction data. The X-ray diffraction (XRD) patterns were indexed as the orthoferrite similar to that of PrFeO3 having a single-phase orthorhombic perovskite structure (Pbnm). Pr1−x Sr x Fe0.8Co0.2O3−δ (x=0.1, 0.2, 0.3) films have been deposited on yttria-stabilized zirconia (YSZ) single-crystal substrates at 700°C by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell cathodes. The structure of the films was analysed by XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM). All films are polycrystalline with a marked texture and present pyramidal grains in the surface with different size distributions. Electrochemical impedance spectroscopy (EIS) measurements of PSFC/YSZ single crystal/PSFC test cells were conducted. The Pr0.7Sr0.3Fe0.8Co0.2O3−δ film at 850°C presents a lower area specific resistance (ASR) value, 1.65 Ω cm2, followed by the Pr0.8Sr0.2Fe0.8Co0.2O3−δ (2.29 Ω cm2 at 850°C) and the Pr0.9Sr0.1Fe0.8Co0.2O3−δ films (5.45 Ω cm2 at 850°C).  相似文献   

12.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in tungsten samples for 1600 s at different temperatures. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The surface roughness variation with temperature generally showed a decrease with increasing temperature. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in W studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in W at certain temperatures, which are both consistent with XRD results (i.e., IW (2 0 0)/IW (2 1 1)) for W (bcc). Hence, showing a correlation between XRD and SIMS results.  相似文献   

13.
SBN thin films were grown on MgO and Silicon substrates by PLD and RF-PLD (radiofrequency assisted PLD) starting from single crystal Sr0.6Ba0.4Nb2O6 and ceramic Sr0.5Ba0.5Nb2O6 stoichiometric targets. Morphological and structural analyses were performed on the SBN layers by AFM and XRD and optical properties were measured by spectroellipsometry. The films composition was determined by Rutherford Backscattering Spectrometry. The best set of experimental conditions for obtaining crystalline, c-axis preferential texture and with dominant 31° in-plane orientation relative to the MgO (100) axis is identified.  相似文献   

14.
The recording of microdomains and regular 1D- (linear) and 2D- (square) domain arrays was performed in SBN crystals by means of applying low (within 10 V) DC voltages to an AFM tip. The ferroelectric phenomena under AFM-tip fields (PE hysteresis loops, the domain dynamics, etc.) agree qualitatively with the polarization processes observed at the macroscopic level and reveal peculiarities obviously related to the relaxor origin of SBN crystals. Particularly, the domain formation and the domain-wall lateral motion occur under fields much lower than E c , which founds no explanation in terms of the model approach to the ferroelectric switching. The formation of linear and square domains results from overlapping closely spaced individual domains. For the first time a drastic dependence of the temporal stability on the domain topology was found. Namely, at identical exposure conditions of recording, the lifetimes of individual domains, domain lines, and domain squares (“chessboards”) are, respectively, several minutes, tens of hours, and no less than a month.  相似文献   

15.
The solid solution between the antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Co1/3Nb2/3)O3 (PCoN) was synthesized by the columbite method. The phase structure and thermal properties of (1−x)PZ–xPCoN, where x=0.0–0.3, were investigated. With these data, the ferroelectric phase diagram between PZ and PCoN has been established. The crystal structure data obtained from XRD indicates that the solid solution PZ–PCoN, where x=0.0–0.3, successively transforms from orthorhombic to rhombohedral symmetry with an increase in PCoN concentration. The AFE→FE phase transition was found in the compositions of 0.0≤x≤0.10. The AFE→FE phase transition shift to lower temperatures with higher compositions of x. The width of the temperature range of FE phase was increased with increasing amount of PCoN. It is apparent that the replacement of the Zr4+ ion by (Co1/3Nb2/3)4+ ions would decrease the driving force for antiparallel shift of Pb2+ ions, because they interrupt the translational symmetry. This interruption caused the appearance of a rhombohedral ferroelectric phase when the amount of PCoN was more than 10 mol%.  相似文献   

16.
The surface of highly ordered pyrolytic graphite (HOPG) was modified by Ar plasma beam scanning at a controllable angle of incidence. The characteristics of plasma modified HOPG were investigated by atomic force microscope (AFM), micro-Raman, X-ray photoemission spectroscopy (XPS), and grazing incident angle of X-ray diffraction (GIAXRD). A smooth surface of HOPG can be obtained by adjusting the incident angles of Ar plasma beam scanning. The surfaces of HOPG become smoother with increasing angle of incidence after Ar plasma beam scanning. Raman spectra indicate that the plasma beam scanning breaks the hexagonal structures of sp2 C=C bonds near the surface of HOPG. The broken hexagonal network structures can form C–O bonds that increase the amount of oxygen on the surface of HOPG, supported by C1s and O1s XPS spectra. GIAXRD data support that the co-existence of both crystalline structures of 2H and 3R in HOPG. The carbon bond breaking in 2H and 3R is different and depends on the angle of incidence. Most broken carbon bonds form damaged aromatic rings near the surface of HOPG.  相似文献   

17.
A series of (Ca1−xy Sr x )Si2O2N2:yEu2+ (x=0.0–0.97, y=0.03) phosphors were synthesized by high-temperature solid-state reaction. The XRD patterns confirm the formation of a solid solution of (Ca1−xy Sr x )Si2O2N2:yEu2+. An intense tunable green light is observed with the increasing ratio of Sr/Ca. With an increase in x, the excitation and emission spectra show a redshift and blueshift, respectively, due to large centroid shift and small Stokes shift. The temperature dependent luminescence is also investigated in the temperature range of 77–450 K. The Huang–Rhys factor and the thermal-quenching temperature are determined. Intense green LEDs were successfully fabricated based on the (Ca1−xy Sr x )Si2O2N2:yEu2+ phosphor and near-ultraviolet (∼395 nm) GaN/blue (460 nm) InGaN chips. All the results indicate that the solid solution (Ca1−xy Sr x )Si2O2N2:yEu2+ is a promising phosphor applicable to near-UV and blue LEDs for solid-state lighting.  相似文献   

18.
This paper represents a contribution to the safeguard project of The ‘Villa del Casale’ near Piazza Armerina (3rd–early 4th century AD), among the most important examples of Sicilian mosaic art, glass materials used for the mosaics execution have been investigated by several techniques. Optical Microscopy and Scanning Electron Microscopy (SEM) were used to give information about the porosity (microstructure) of glass pastes and the presence of crystalline areas or alteration layers at the surface inside the glass paste itself. SEM-EDX, X-ray Photoelectron Spectroscopy (XPS), X-ray Fluorescence (XRF) and UV-VIS-NIR reflectance analysis have provided information to obtain the chemical composition of the tesserae and on the chromophore groups. X-ray diffraction (XRD) was employed to identify opacifiers. The analytical results indicate that all tesserae are silica-soda-lime and silica-soda-lime-lead glasses. Chromophore ions consist of Cu(II) (green and pale blue tesserae), Cu(0) (red sample), Fe(II) (pale blue and the green glasses), Co(II) (deep blue samples) and Mn as a decolourant, while opacifiers found out are Pb x Sb2−z (O,OH,H2O)6 (bindheimite) in the yellow and green tesserae, CaSb2O6 (calcium antimony oxide) in the pale blue samples, and Ca2Sb2O7 (calcium antimony oxide) in the blue tesserae. The glasses that show the greatest signs of degradation processes are those of a pale blue hue.  相似文献   

19.
Sr1−x La x CuO2 (x=0.10−0.15) thin films with an infinite-layer type structure were grown on BaTiO3 buffered (001) SrTiO3 substrates by pulsed laser deposition (PLD). The evolution of the growth front was monitored, in-situ, by high-pressure reflection high-energy electron diffraction (RHEED), while the surface morphology was analyzed by means of atomic force microscopy (AFM), ex-situ. X-ray diffraction (XRD) was used to determine the evolution of the film structure with deposition and cooling parameters, as well as to study the type and level of epitaxial strain in the Sr1−x La x CuO2 films. The RHEED data showed that the Sr1−x La x CuO2 films grow on BaTiO3/SrTiO3 following a 2D or Stranski-Krastanov mechanism, depending on the La doping level. The transition point (critical thickness d c) from layer-by-layer like (2D) to island (3D) growth depends on the film stoichiometry: decreasing the La doping concentration x from 0.15 to 0.10, the critical thickness d c increases from ∼45 nm to ∼75 nm. In order to induce superconductivity, the Sr1−x La x CuO2 films were cooled down under reduction conditions. The as-deposited films showed semiconducting or metallic behavior, the resistivity decreasing with increasing La concentration. Post-deposition vacuum annealing resulted in a superconducting transition onset (but no zero resistance down to 4.2 K) only for some of the x=0.15 Sr1−x La x CuO2 films.  相似文献   

20.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号