首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitri FG 《Ultrasonics》2005,43(4):271-277
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.  相似文献   

2.
Mitri FG  Fellah ZE 《Ultrasonics》2006,44(3):287-296
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.  相似文献   

3.
Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies - mode-switching - a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration.  相似文献   

4.
Mitri FG 《Ultrasonics》2006,44(3):244-258
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.  相似文献   

5.
Theoretical and experimental studies of the acoustic scattering by a finite linear grating of elastic cylindrical shells are performed. It is observed that a resonant interaction takes place at low frequency when the shells are very close to each other. This phenomenon can be clearly associated to the Scholte-Stoneley wave that propagates around a single shell. It is shown that each resonance of the Scholte-Stoneley wave is split up into N resonances when N shells compose the grating.  相似文献   

6.
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.  相似文献   

7.
Chu’s theory for the impulse response of a point source to an isovelocity density contrast wedge [Chu D. Impulse response of density contrast wedge using normal coordinates. J Acoust Soc Am 1989;86:1883-96] enables wedge-assemblage rough surface scattering models to be extended to a broad range of penetrable seafloors, but is computationally intensive since it necessitates finding the multifold roots of a characteristic eigenvalue equation, and summing a power series, for each wedge apex. This present work considers the properties and relationships of the direct, reflected, and diffracted field components of a density contrast wedge. In particular, an analysis of the physical origin and behavior of diffractions associated with specular reflections of the source in the wedge faces leads to a simple extension of the Biot-Tolstoy theory [Biot MA, Tolstoy I. Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. J Acoust Soc Am 1957;29:381-91] to density contrast wedges with reflectivity ∣R∣ < 1, for wedge angles within the range 150 ? θw ? 210°, where the diffractions are predominantly associated with a single reflection in each wedge face. This facilitates rapid time domain calculations of acoustic bottom scattering and penetration for complex multilayered seafloors.  相似文献   

8.
In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces.  相似文献   

9.
F.G. Mitri 《Annals of Physics》2008,323(7):1604-1620
Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.  相似文献   

10.
A method based on the solution to a generalized eigenproblem of hybrid matrix is presented for stable analysis of Floquet wave propagation in one-dimensional phononic crystals with solids and fluids. The method overcomes the numerical instability in the standard eigenproblem of transfer matrix, thus enabling Floquet waves to be determined reliably. The recursion relations of hybrid matrix for periodic multilayered structure of various solid and/or fluid phases are formulated. Dispersion relation and omnidirectional reflection for one-dimensional phononic crystals with solids and fluids are discussed. The frequency-thickness range of phononic bandgap is determined conveniently based on the Floquet wavenumbers.  相似文献   

11.
F.G. Mitri 《Ultrasonics》2009,49(8):794-798

Background and objective

Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604–1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase ?.

Method

The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840–2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100–1103] to derive the general expression for the radiation force function YJm,st(ka,β,m), which is the radiation force per unit characteristic energy density and unit cross-sectional surface. The radiation force function is expressed as a generalized partial wave series involving the half-cone angle β of the wave-number components and the order m of the HOBB.

Results

Numerical results for the radiation force function of a first and a second-order Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,β,m) show that the force is generally directed to a pressure node when m is a positive even integer number (i.e. YJm,st(ka,β,m)>0), whereas the force is generally directed toward a pressure antinode when m is a positive odd integer number (i.e. YJm,st(ka,β,m)<0).

Conclusion

An expression is derived for the radiation force on a rigid sphere placed along the axis of an ideal non-diffracting HOBB of acoustic standing (or stationary) waves propagating in an ideal fluid. The formulation includes results of a previous work done for a zero-order Bessel beam standing wave (m = 0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.  相似文献   

12.
Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.  相似文献   

13.
The dependence of photoacoustic spectra on different experimental parameters was investigated by both theoretical and experimental means. The experiments were carried out with an inexpensive resonant optoacoustic system based on near-infrared laser diodes, which allowed photoacoustic and direct absorption spectra to be recorded simultaneously. The experimental observations were compared to theoretical predictions. It was also demonstrated that source-frequency (wavelength) modulation at the resonance frequency of the cell provides superior signal to noise ratio compared to amplitude modulation and eliminates background drifts and fluctuations.  相似文献   

14.
Varied, counter-demanding objectives in designing the underwater noise control linings are addressed using a finite element model based methodology. Four different kinds of designs are proposed to attend to diverse and conflicting requirements concerning echo reduction (ER) and transmission loss (TL) performance of these linings. In this regard a slightly modified hybrid type finite element based on the Pian and Tong (PT) formulation has been used to make the computational efforts less demanding as compared to the original one. The adequacy of this formulation has been shown by comparing its results with the analytical, finite element analysis based, and experimental results. Different unit cell representations for different types of distributions of air cavities on the linings are discussed with respect to their limitations and applicability. Effect of static pressure is studied by using a simplified technique which can be used to simulate deep sea testing environment. Performance variation of different designs is investigated under different water depths to study their applicability in such situations.  相似文献   

15.
The general Keller-Herring equation for free gas bubbles is augmented by specific terms to describe the elasticity, viscosity and thickness of the encapsulating shell in ultrasound contrast agent microbubbles. A numerical investigation that analyses the acoustic backscatter from bubbles is employed to identify resonance frequencies that can be compared, for increasing driving pressure amplitude, with linear approximations obtained via analytical considerations. Calculations for bubbles of the size employed in diagnostic ultrasound, between 2 and 6 mum diameter, that are immersed in water and blood and exposed to monochromatic insonation, causing the bubbles to undergo stable cavitation, reveal that the resonance frequency diverges from the linear approximation as the pressure amplitude is increased. The shift in resonance, to lower frequency values, is found to be more pronounced for larger bubbles with the calculated value differing by up to 40% from the linear approximation. The results of this simulation might be potentially useful in preparation of formulations of ultrasound contrast agents with the specifically desired features, such as for instance resonance frequency.  相似文献   

16.
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.  相似文献   

17.
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.  相似文献   

18.
A quasi-single-phase orthorombic Si2N20 compound is obtained by hot-pressing sintering using homogeneous precursors as raw materials under nitrogen atmosphere. The bulk hardness of orthorombie Si2N20 (o-Si2N2 O) is investigated by a nanoindenter experiment; the results show that o-Si2N20 with maximal value about 19 GPa has a high hardness covalent crystal besides β-Si3N4. It is discovered that the high hardness is mainly attributed to the unique crystal structure. The bridging O atoms in the o-Si2N20 are responsible for decreasing hardness. It is found that the Si-O bonds in the open tetrahedral crystal structure are more easily broken and tilted than other bonds.  相似文献   

19.
20.
Tan EL 《Ultrasonics》2003,41(3):229-236
This paper presents a concise and efficient scattering matrix formalism for stable analysis of elastic wave propagation in multilayered anisotropic solids. The formalism is capable of resolving completely the numerical instability problems associated with transfer matrix method, thereby obviating the extensive reformulation in its modified versions based on delta operator technique. In contrast to the earlier reflection matrix formalisms, all scattering matrices are obtained in a direct manner without invoking wave-propagator or scatterer operator concepts. Both local and global reflection and transmission matrices corresponding to scatterings in two and more layers are derived. The derivation of global scattering matrices in terms of the local ones is carried out concisely based on physical arguments to provide better insights into scattering mechanism. Another formulation which is even more succinct is also devised for obtaining the global scattering matrices directly from eigensolutions. The resultant expressions and algorithm are terse, efficient and convenient for implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号