首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li XL  Shi LX  Zhang LY  Wen HM  Chen ZN 《Inorganic chemistry》2007,46(25):10892-10900
Reaction of Pt(dppm-P,P')Cl2 (dppm = 1,2-bis(diphenylphosphino)methane) with HCCPhtpy (HCCPhtpy = 4'-(4-ethynylphenyl)-2,2':6',2"-terpyridine) in the presence of copper(I) iodide and diisopropylamine induced isolation of mononuclear complex cis-Pt(dppm-P,P')(C[triple bond]CPhtpy)2 (1), which can be converted into face-to-face diplatinum(II) species Pt2(mu-dppm)2(C[triple bond]CPhtpy)4 (5) when equivalent dppm is added. Incorporating 1 or 5 to Ln(hfac)3(H2O)2 (Hhfac = hexafluoroacetylacetone) gave PtLn2 (Ln = Nd (2), Eu (3), Yb (4)) or Pt2Ln4 (Ln = Nd (6), Eu (7), Gd (8), Yb (9)) adducts with the lanthanide centers chelated by terdentate terpyridyl in the bridging C[triple bond]CPhtpy. The structures of 1, 6, 7, and 9 were determined by X-ray crystallography. Upon excitation at lambdaex = 360-450 nm (2-4) or 360-500 nm (6-9), where the PtII alkynyl antenna chromophores absorb strongly but the model complexes Ln(hfac)3(HC[triple bond]CPhtpy) lack obvious absorption in this region, these PtLn2 and Pt2Ln4 (Ln = Nd, Eu, Yb) species exhibit band-like lanthanide luminescence that is typical of the corresponding Ln3+ ions, demonstrating unambiguously that efficient Pt --> Ln energy transfer occurs indeed from the PtII alkynyl antenna chromophores to the lanthanide centers across the bridging CCPhtpy with intramolecular Pt...Ln distances being ca. 14.2 A. The Pt --> Ln energy transfer rate (kET) is 6.07 x 10(7) s(-1) for Pt2Nd4 (6) and 2.12 x 10(5) s(-1) for Pt2Yb4 (9) species.  相似文献   

2.
Xu HB  Zhang LY  Ni J  Chao HY  Chen ZN 《Inorganic chemistry》2008,47(22):10744-10752
Reaction of polymeric gold(I) acetylide species (bpyC[triple bond]CAu)n (bpyC[triple bond]CH = 5-ethynyl-2,2'-bipyridine) with diphosphine ligands Ph2P(CH2)nPPh2 (n = 2-6) or 1,1'-bis(diphenylphosphino)-ferrocene (dppf) in dichloromethane induces isolation of binuclear gold(I) complexes (bpyC[triple bond]CAu)2{mu-Ph2P(CH2)nPPh2} or (bpyC[triple bond]CAu)2(mu-dppf). Complexation of Ln(hfac)3 (hfac = hexafluoroacetylacetonate, Ln = Nd, Eu, Er, Yb) subunits to the binuclear gold(I) complexes through 2,2'-bipyridyl chelation gives the corresponding Au4Ln4 or Au2Ln2 heteropolynuclear complexes. Noticeably, upon formation of the Au4Ln4 arrays by complexation of (bpyC[triple bond]CAu)2(mu-Ph2P(CH2)4PPh2) (3) with Ln(hfac)3 units, trans-conformation in 3 transforms dramatically to the cis-arranged form due to the strong driving force from ligand-unsupported Au-Au contacts between two Au2Ln2 subunits. In contrast, cis-conformation in (bpyC[triple bond]CAu)2(mu-dppf) (6) stabilized by Au-Au interactions is reversed to the trans-oriented form upon formation of Au2Ln2 arrays by introducing Ln(hfac)3 units through 2,2-bipyridyl chelation. The binuclear gold(I) complexes show bright blue luminescence featured by ligand-centered pi --> pi* (C[triple bond]Cbpy) states together with low-energy emission at 500-540 nm, associated with 3(pi-->pi*) excited states, mixed probably with some characteristic from (Au-Au) --> (C[triple bond]Cbpy) 3MMLCT transition. For Au4Ln4 or Au2Ln2 complexes, sensitized lanthanide luminescence is achieved by energy transfer from Au-acetylide chromophores with lifetimes in the sub-millisecond range for EuIII complexes, whereas in the microsecond range for near-infrared emitting NdIII, ErIII, and YbIII species.  相似文献   

3.
Incorporation of diplatinum complex Pt2(micro-dppm)2(bpyC[triple bond]C)4 or Pt2(mu-dppm)2(phenC[triple bond]C)4 with Ln(hfac)3(H2O)2 (Ln = Nd, Eu, Yb) gave a series of Pt2Ln2 and Pt2Ln4 bimetallic arrays, in which the excitation of d(Pt) -->pi*(R-C[triple bond]C) MLCT absorption induces sensitisation of lanthanide luminescence through efficient d --> f energy transfer from Pt(II) alkynyl chromophores.  相似文献   

4.
The crystal structures of ternary Ln(DBM)(3)phen complexes (DBM = dibenzoylmethane, phen = 1,10-phenanthroline, and Ln = Nd, Yb) and their in situ syntheses via the sol-gel process are reported. The properties of the Ln(DBM)(3)phen complexes and their corresponding Ln(3+)/DBM/phen-co-doped luminescent hybrid gels obtained via an in situ method (Ln-D-P gel) have been studied. The results reveal that the lanthanide complexes are successfully in situ synthesized in the corresponding Ln-D-P gels. Both Ln(DBM)(3)phen complexes and Ln-D-P gels display sensitized near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Ln(3+) ions (Ln = Nd, Yb), an antenna effect. The radiative properties of the Nd(3+) ion in a Nd-D-P gel are discussed using Judd-Ofelt analysis, which indicates that the (4)F(3/2) --> (4)I(11/2) transition of the Nd(3+) ion in the Nd-D-P gel can be considered as a possible laser transition.  相似文献   

5.
The SCMEH-MO method with average relativistic and spin-orbit effects has recently been applied to study the electronic structure and bonding in samarium pentamethylcyclopentadienyls. In this report the same approach has been utilized in studying the electronic structures of Nd and Sm hexacarbonyls. In contrast to the stable transition metal d-block carbonyls, these lanthanide carbonyls are found to be quite unstable. These findings are based on calculated electronic structures and bond energies. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Reaction of [Pt()Cl]+ ( = 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine) with 5-ethynyl-2,2′-bipyridine (HCCbpy) or 5,5′-bis(trimethylsilylethynyl)-2,2′-bipyridine (Me3SiCCbpyCCSiMe3) in the presence of cuprous iodide gives [Pt(tBu3tpy)(CCbpy)]+ (1) or [{Pt()}2(CCbpyCC)]2+ (2) through Pt-acetylide σ-coordination, respectively. Incorporating 1 or 2 with Ln(hfac)3(H2O)2 through 2,2′-bipyridyl chelating the LnIII (Ln = Nd, Eu, and Yb) centers induces formation of a series of [Pt()(CCbpy){Ln(hfac)3}]+ (PtLn) or [{Pt()}2(CCbpyCC){Ln(hfac)3}]2+ (Pt2Ln) complexes, respectively. The structures of binuclear platinum(II) complex 2(PF6)2 and heterobinuclear PtNd complex 3(CF3COO) were determined by single crystal X-ray diffraction. Both 1 and 2 exhibit typical low-energy absorption bands in near UV-Vis region, ascribed to dπ(Pt) → π() MLCT and π(CCbpy/CCbpyCC) → π() LLCT transitions. Upon formation of the PtLn or PtLn2 complexes, the low-energy absorption bands are obviously blue-shifted (15-20 nm) compared with those in the PtII precursor 1 or 2. With excitation at 350 nm < λ < 550 nm which is the absorption region of MLCT and LLCT transitions, sensitized luminescence that is characteristic of the corresponding lanthanide(III) ions occurs in both PtLn and Pt2Ln complexes. In contrast, Pt-based luminescence from the MLCT and LLCT states are mostly quenched in these Pt-Ln heteronuclear complexes, revealing that quite effective Pt → Ln energy transfer is operating from the Pt()(acetylide) chromophore to the lanthanide(III) centers.  相似文献   

7.
A mass spectrometric study of the overheated vapor over neodymium, erbium, ytterbium, and lutetium dipivaloylmethanates has been carried out. The mass spectra of these compounds depend significantly on the degree of overheating. This fact can be interpreted in terms of the variation of the concentration and chemical composition of metal-containing molecular species with vapor temperature. As the vapor temperature is raised from 200 to 700°C, the intensity of the molecular ion [M(thd)3]+ decreases relative to the [M(thd)2]+ ion intensity by approximately one order of magnitude for M = Er, Yb, and Lu and by two orders of magnitude for M = Nd. This finding is evidence in favor of the thermal decomposition of the lanthanide tris(dipivaloylmethanates) occurring via a two-step mechanism initially yielding the M(thd)2 radical.  相似文献   

8.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

9.
Lanthanide complexes with benzothiazole derivatives (Btz-R, R = OCH(3) and OH) and terpyridine (tpy) ligands were synthesized, and their photophysical properties were precisely investigated. The free Btz-OCH(3) ligand in toluene, excited with UV light, produced the normal emission bands around 410 nm, whereas Btz-OH produced a strong excited-state intramolecular proton transfer (ESIPT) band at 510 nm. The Ln(III) complexes (Ln = Nd, Er, and Yb) exhibited sensitized near-IR luminescence when the Btz-R ligands were excited. The sensitized luminescence quantum yields (Phi(Ln)) of the lanthanide complexes were markedly enhanced by ESIPT: for [Nd(Btz-R)(tpy)] in toluene solution, Phi(Ln) = 0.04% for Btz-OCH(3) and 0.39% for Btz-OH. The sensitized luminescence of the Er(III) complexes (Phi(Ln) = 0.002% for Btz-OCH(3) and 0.009% for Btz-OH) was less efficient than that of the Nd(III) complexes. This difference is due to the smaller energy gap between the emitting and ground levels of the Er(III) ion. The rate constants for the energy transfer from Btz-R to Ln(III) were about approximately 10(9) s(-1), as evaluated by the F?rster resonance energy transfer mechanism.  相似文献   

10.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

11.
The phase diagrams of the SrEr2S4-SrLn2S4 (Ln = Nd, Dy, Yb) systems were constructed, and the diagrams of the SrLn??2S4-SrLn??2S4 (Ln??, Ln?? = La-Lu) systems were predicted. The diagram of the SrEr2S4-SrNd2S4 system is of the eutectic type. The diagrams of the SrEr2S4-SrDy2S4 and SrEr2S4-SrYb2S4 systems involve the formation of a continuous series of solid solutions with the rhombic structure of the CaFe2O4.  相似文献   

12.
Hollow La(2)O(3):Ln (Ln = Yb/Er, Yb/Ho) microspheres with up-conversion (UC) luminescence properties were successfully synthesized via a facile sacrificial template method by employing carbon spheres as hard templates followed by a subsequent heating process. The structure, morphology, formation process, and fluorescent properties are well investigated by various techniques. The results indicate that the hollow La(2)O(3):Ln microspheres can be well indexed to the hexagonal La(2)O(3) phase. The hollow La(2)O(3):Ln microspheres with uniform diameter of about 270 nm maintain the spherical morphology and good dispersion of the carbon spheres template. The shell of the hollow microspheres consists of numerous nanocrystals with the thickness of approximately 40 nm. Moreover, the possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow La(2)O(3):Ln microspheres has also been proposed. The Yb/Er and Yb/Ho codoped La(2)O(3) hollow spheres exhibit bright up-conversion luminescence with different colors derived from different activators under the 980 nm NIR laser excitation. Furthermore, the doping concentration of the Yb(3+) is optimized under fixed concentration of Er(3+)/Ho(3+). This material may find potential applications in drug delivery, hydrogen and Li ion storage, and luminescent displays based on the uniform hollow structure, dimension, and UC luminescence properties.  相似文献   

13.
The compounds BaLn2Se4 (Ln = rare‐earth metal = lanthanide = Er, Tm and Yb), namely barium di(erbium/thulium/ytterbium) tetraselenide, crystallize in the orthorhombic space group Pnma in the CaFe2O4 structure type. In this structure type, all atoms possess m symmetry. The Ln atoms are octahedrally coordinated by six Se atoms. A three‐dimensional channel structure is formed by the corner‐ and edge‐sharing of these LnSe6 octahedra. The Ba atoms are coordinated to eight Se atoms in a bicapped trigonal–prismatic arrangement, and they occupy the channels of the three‐dimensional framework.  相似文献   

14.
The crystal-chemical properties of lanthanide oxobromotungstates of composition LnWO4Br (Ln = Eu, Gd, Dy, Er, Yb) are studied. The crystal system and space group for the oxobromotungstates are determined. The unit cell parameters are refined. The parameters a, b, c, and V of the LnWO4Br compounds are studied as functions of the atomic number of the lanthanide. Analytical equations are derived to predict unit cell parameters for unsynthesized lanthanide oxobromotungstates of the class in question.  相似文献   

15.
毛江高  金钟声 《结构化学》1994,13(4):276-280
CrystalStructuresofLn(NO_3)_3(Ln=La,Yb)Complexeswith12-crown-4MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChem...  相似文献   

16.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

17.
Three homoleptic lanthanide complexes, [C6H5COCHC(CH3)N(p-ClC6H4)]3Ln(THF)n(n = 0, Ln = Yb(1); n = 0, Ln = Y(2); n = 1, Ln = Nd(3)), were synthesized by amine elimination reaction of Ln[N(SiMe3)2]3 with 1-phenyl-3-N-(p-chlorophenylimino)-1-butanone. These complexes crystallize in triclinic, space group P1 with a = 9.805(3), b = 14.831(6), c = 16.075(6) A, α = 111.996(9), β = 91.570(7), γ = 93.744(6)°, V = 2159.4(13) A3, Z = 2, D3 c = 1.515 g/cm, F(000) = 986, μ(MoKα) = 2.396 mm-1, R = 0.0360 and wR = 0.0850 for 9548 observed reflections with I 2σ(I) for complex 1; a = 9.861(5), b = 14.852(9), c = 16.111(9) A, α = 112.362(13), β = 91.949(11), γ = 93.678(14)°, V = 2173(2) A3, Z = 2, Dc = 1.377 g/cm3, F(000) = 924, μ(MoKα) = 1.570 mm-1, R = 0.0735 and wR = 0.1389 for 8015 observed reflections with I 2σ(I) for complex 2; and a = 9.308(3), b = 15.357(3), c = 17.419(4) A, α = 66.493(13), β = 88.61(2), γ = 86.664(19)°, V = 2279.4(9) A3, Z = 2, Dc = 1.499 g/cm3, F(000) = 1046, μ(MoKα) = 1.364 mm-1, R = 0.0843 and wR = 0.2280 for 8433 observed reflections with I 2σ(I) for complex 3. Each central metal in complexes 1 and 2 is six-coordinated by three nitrogen and three oxygen atoms from three β-ketoiminate ligands to give a distorted octahedral geometry, while the central metal in 3 is seven-coordinated by three nitrogen and three oxygen atoms from three β-ketoiminate ligands and one oxygen atom from the solvated THF molecule to complete a distorted monocapped trigonal prism.  相似文献   

18.
合成了四(α-噻吩甲酰三氟丙酮)合稀土(La,Nd,Dy,Yb)酸(E)-N-十六烷基-4-[2-(4-二乙氨基苯基)乙烯基]吡啶四个新的稀土配合物。用元素分析、紫外可见光谱、红外光谱、小角X射线衍射、差热-热重分析和摩尔电导对配合物进行了表征。研究了它们的表面压-面积(π-A)等温线行为。研究结果表明它们具有良好的成膜(Langmuir)性能, La, Nd, Dy和Yb配合物零压分子平均截面积A~π~→~0分别为1.94,1.93,1,73和1.85nm^2/分子。  相似文献   

19.
One-dimensional Ca(4)Y(6)(SiO(4))(6)O: Ln(3+) (Ln=Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD) pattern and high-resolution transmission electron microscopy (HRTEM) confirmed that the fibers were composed of hexagonal Ca(4)Y(6)(SiO4)(6)O phase. Thermogravimetric and differential scanning calorimetry (TG-DSC) results showed that the Ca(4)Y(6)(SiO4)(6)O phase began to crystallize at 740°C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated that the diameter of as-prepared microfibers ranged from 390 to 900 nm and the diameter of the microfibers annealed at 1000°C ranged from to 120 to 260 nm. Under ultraviolet and low-voltage electron beams (3-5 kV) excitation, the Ca(4)Y(6)(SiO(4))(6)O: Ln(3+) (Ln=Eu, Tb) samples showed the red and green emission, corresponding to (5)D(0)→(7)F(2) transition of Eu(3+) and (5)D(4)→(7)F(5) transition of Tb(3+), respectively.  相似文献   

20.
Yttrium tungstate precursors with novel 3D hierarchical architectures assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method with the assistance of sodium dodecyl benzenesulfonate (SDBS). After calcination, the precursors were easily converted to Y(2)(WO(4))(3) without an obvious change in morphology. The as-prepared precursors and Y(2)(WO(4))(3) were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra, respectively. The results reveal that the morphology and dimensions of the as-prepared precursors can be effectively tuned by altering the amounts of organic SDBS and the reaction time, and the possible formation mechanism was also proposed. Upon ultraviolet (UV) excitation, the emission of Y(2)(WO(4))(3):x mol% Eu(3+) microcrystals can be tuned from white to red, and the doping concentration of Eu(3+) has been optimized. Furthermore, the up-conversion (UC) luminescence properties as well as the emission mechanisms of Y(2)(WO(4))(3):Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho) microcrystals were systematically investigated, which show green (Er(3+), (4)S(3/2), (2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow (Ho(3+), (5)S(2)→(5)I(8)) luminescence under 980 nm NIR excitation. Moreover, the doping concentration of the Yb(3+) has been optimized under a fixed concentration of Er(3+) for the UC emission of Y(2)(WO(4))(3):Yb(3+)/Er(3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号