首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence of CO2 clusters excited by an electron beam in a molecular beam formed from a free jet expansion of carbon dioxide is investigated. Data on the fluorescence of the clusters are obtained by comparing the electron-beam-induced fluorescence with the signal appearing in an electronic-fluorescence detector as a result of reflection of the cluster beam from an obstacle placed after the electron beam, as well as with the intensity of the cluster beam. It is established that, unlike a jet expansion, for CO2 clusters in a molecular beam the fluorescence yield from a cluster decreases significantly with increasing cluster size and is very small for clusters of large size. It is concluded on the basis of the results from an investigation of the fluorescence of CO2 clusters that the electron-beam-induced fluorescence technique can be used for measurements in molecular beams with CO2 clusters. Zh. Tekh. Fiz. 67, 63–71 (July 1997)  相似文献   

2.
Helium clusters, HeN-X, containing a probe molecule, X, are studied by infrared spectroscopy for the size range N≈1∼100. Spectra are observed using a supersonic jet expansion and a tunable diode laser source operating in a rapid-scan (sweep integration) mode. The pulsed jet uses a dilute gas mixture of the probe molecule in helium, with relatively high backing pressures (5–50 bar), and a cooled (80–295 K) nozzle. Sensitivity is enhanced by multi-passing the laser beam through the jet with a toroidal mirror system. The clusters are larger than van der Waals dimers and trimers, but smaller than those encountered in the field of helium nanodroplets (N≈103–105). Furthermore, individual cluster sizes are resolved here, but not with nanodroplets, and infrared absorption is detected directly (change in transmitted laser intensity), rather than indirectly (change in cluster fragmentation). Trends in the spectra are described for five probe molecules, X=CO, SiH4, OCS, N2O, and CO2. Superfluid effects dominate for clusters larger than N≈8. Notable results include the unexpected observation of broad oscillations in the effective rotational constants as a function of cluster size. PACS 33.20.Ea; 34.30.+h; 36.40.Mr; 42.55.Px  相似文献   

3.
The technique is described and results are presented for time-of-flight (TOF) measurements of the number density of molecules using electron-beam fluorescence diagnostics of a cluster-containing molecular beam extracted from a jet of condensing CO2. The possibility of using these methods to record the velocity distribution function of the molecules (monomers) in a cluster beam is substantiated. Methods for measuring the velocity of the clusters in a CO2 cluster beam based on their fragmentation upon impact on a solid surface are proposed and implemented. The domains of applicability of these methods and their shortcomings and merits in comparison with the conventional methods are discussed. The proposed methods are used in measurements of the velocity and temperature of the gas and the velocity of the clusters in a jet of condensing CO2. Zh. Tekh. Fiz. 68, 120–124 (August 1998)  相似文献   

4.
Design and operation of a pulsed Laval nozzle and the characterization of molecular flow through such a nozzle using IR tunable diode laser (TDL) is the central theme of this work. The results here deal with He diluted N2O and CO2 gaseous systems. Boltzmann type plots of the spectral intensity data of both N2O and CO2 show non-linear behaviour. We have attempted to understand this non-linear behaviour of Boltzmann plots in terms of (1) instability in the jet and (2) a two-temperature model for the flowing gas, a cold central core and a hot boundary layer close to the nozzle walls. The model based on jet instability represents the data somewhat poorer than the two-temperature model. The parameters derived from fitting our experimental data to the former model could be used to calculate the thermodynamic parameters only through further approximations. Measured absorption line profile of the P(15) line of the v 2 band of N2O as a function of axial distance from the nozzle exit gradually shifts from a Lorentzian to a Gaussian type. Velocity distribution of N2O molecules in a Laval nozzle is determined by differentiating the absorption line profile of the P(15) line (v 0=576.235 cm–1) of the v 2 band of N2O. Translational temperature of N2O molecules is determined from the observed spectral profiles.  相似文献   

5.
An assembled CO2 gas cluster ion beam system was assessed using a retarding field analyzer and a time-of-flight mass spectrometer. The CO2 gas was expanded to form gas clusters at the input pressure of 1–5 bar through a quartz Laval nozzle. At 4 bar, it is confirmed that the clusters consisted of about 500 molecules. Also the dependence of the mean cluster size distribution on source temperature was examined. At the low fluence of ion beam, an isolated gas cluster ion impact on solid surfaces was investigated. CO2 gas cluster ions were irradiated at the acceleration voltage of 40–60 kV on highly oriented pyrolytic graphite. Si with native oxide layers, and Cu film deposited on Si wafer. After very short exposure of cluster ions, induced hillocks with about 0.8–1 nm in height and 20 nm in width were outgrown from the impacted surfaces. After prolonged irradiation on Si and Cu/Si, humping was more developed and consequently the surface morphology seemed to be saturated because of gradual filling the gap between the hillocks.  相似文献   

6.
Infrared laser absorption by a planar molecular jet is studied. The absorption lineshape is narrowed by a factor of 2 to 3, as compared to the absorption lineshape in bulk gas. The infrared absorption of CO2 clusters is observed directly in a jet. The formation of clusters in the jet is monitored for different mixtures and distances from the nozzle.Work supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM)  相似文献   

7.
A universal probe method for measuring the temperature of large clusters (nanoparticles) in a cluster beam has been proposed and experimentally implemented. The temperature of large van der Waals clusters (nanoparticles) (CO2) N (where N ⩾ 102 is the number of monomers in a cluster) in the cluster beam is measured using this method with SF6 molecules as miniature probe thermometers. The SF6 molecules are captured by the (CO2) N clusters in intersecting cluster and molecular beams and sublimate from the surface of the clusters, carrying information on the velocity and temperature (internal energy) of the clusters. The velocity (kinetic energy) of SF6 molecules sublimating from the surface of the clusters has been measured by the time-of-flight method and the temperature of the clusters has been determined as T cl = (105 ± 15) K.  相似文献   

8.
A temperature measurement technique using SF6 molecules as tiny probe thermometers is described, and results are presented, for large (CO2) N van der Waals clusters (with N ≥ 102) in a cluster beam. The SF6 molecules captured by (CO2) N clusters in crossed cluster and molecular beams sublimate (evaporate) after a certain time, carrying information about the cluster velocity and internal temperature. Experiments are performed using detection of these molecules with an uncooled pyroelectric detector and infrared multiphoton excitation. The multiphoton absorption spectra of molecules sublimating from clusters are compared with the IR multiphoton absorption spectra of SF6 in the incoming beam. As a result, the nanoparticle temperature in the (CO2) N cluster beam is estimated as T cl < 150 K. Time-of-flight measurements using a pyroelectric detector and a pulsed CO2 laser are performed to determine the velocity (kinetic energy) of SF6 molecules sublimating from clusters, and the cluster temperature is found to be T cl = 105 ± 15 K. The effects of various factors on the results of nanoparticle temperature measurements are analyzed. The potential use of the proposed technique for vibrational cooling of molecules to low temperatures is discussed.  相似文献   

9.
It has been found that SF6 molecules captured by large van der Waals clusters (CO2) N (where N ≥ 102 is the number of monomers in a cluster) in intersecting molecular and cluster beams sublimate from the surface of clusters after a certain time and carry information on the velocity and temperature (internal energy) of clusters. Experiments have been carried out for detecting these molecules by means of a pyroelectric detector and the infrared multiphoton excitation method. The multiphoton absorption spectra of molecules sublimating from the surface of clusters have been obtained. The temperature of the (CO2) N nanoparticles in the cluster beam has been estimated using these spectra and comparing them with the infrared multiphoton absorption spectra of SF6 in the initial molecular beam.  相似文献   

10.
In measurements in jets of condensing gases, problems arise in interpreting the results obtained with the use of electron-beam fluorescence diagnostics, in particular due to the possible contribution of clusters to the radiation from the jet. Data on the fluorescence are obtained by comparing the optical and x-ray emission excited by an electron beam with calculations of the amount of condensate. Studies are made on the fluorescence of CO2 clusters excited by an electron beam in a free jet of the condensing carbon dioxide gas. It is found that the clusters radiate at wavelengths of the monomers extremely effectively per molecule, almost as much as the free molecules, and the dependence on size is quite weak. It is shown that with electron-impact excitation the emission of the clusters comes about as the result of the ejection of excited molecules from the cluster as the latter fragments. The results of this investigation of the fluorescence of CO2 clusters lead to conclusions regarding the use of electron beam fluorescence diagnostics for measurements in free jets with CO2 clusters. Zh. Tekh. Fiz. 67, 43–52 (March 1997)  相似文献   

11.
The rotational temperature behaviour in adiabatic jet expansion of molecular nitrogen is investigated over a wide range of stagnation density and nozzle diameter values using coherent anti-Stokes Raman spectroscopy (CARS). Estimates of rotational collisional numbers are made for both (N2+N2) and (N2+Ar) systems. The aspect of cluster formation for both systems is also discussed.  相似文献   

12.
The clustering of atoms and molecules in a pulsed gas-dynamic jet has been investigated by the method of time-of-flight measurements performed with an uncooled pyroelectric detector (PED). The method is based on measuring the amplitude of the pyroelectric signal induced on the detector by a molecular (atomic) beam and the particle velocity in the beam as a function of the gas pressure above the nozzle. In addition, the number of molecules (atoms) emerging from the nozzle in a pulse has been measured. We describe the method and present the results of our studies on the clustering of He, Xe, CH4, CO2, and other gases. The peculiarities of the detection of molecular and cluster beams with PED are considered. We show that the described method allows the clustering threshold as a function of the gas pressure above the nozzle to be determined. We have established the threshold pressures at which particle clustering in the jet begins. Optimal conditions for the generation of intense cluster beams have been found.  相似文献   

13.
针对特定形式的喷嘴产生的Ar气体团簇,利用瑞利散射法研究了团簇的生长演化过程,测量了不同背压下空间轴向上的团簇尺度,得到了团簇尺寸随轴向距离与背压的关系.实验发现,在20—60 atm(1 atm=1013 kPa)背压范围内,距离喷嘴出口5 mm处,Ar团簇尺度最大. 关键词: 超声喷流 Ar团簇 瑞利散射 团簇尺度  相似文献   

14.
Using a high resolution ( meV) laser photoelectron attachment method, we have studied the formation of (CO 2) q ions (q = 4−22) in collisions of low energy electrons (1−180 meV) with (CO2) N () clusters. The previously reported “zero energy resonance”, observed at much larger electron bandwidths, actually consists of several narrow vibrational Feshbach resonances of the type [(CO 2) N −1CO which involve a vibrationally-excited molecular constituent ( denotes vibrational mode) and a diffuse electron weakly bound to the cluster by long range forces. The resonances occur at energies below those of the vibrational excitation energies of the neutral clusters [(CO 2) N −1CO ]; the redshift rises with increasing cluster ion size q by about 12 meV per unit; these findings are recovered by a simple model calculation for the size dependent binding energies. The size distribution in the cluster anion mass spectrum, resulting from attachment of very slow electrons, mainly reflects the amount of overlap of solvation-shifted vibrational resonances with zero energy; the cluster anion size q is identical with or close to that of the attaching neutral cluster. Received 11 January 2000 and Received in final form 10 April 2000  相似文献   

15.
Melting of isolated tin nanoparticles   总被引:1,自引:0,他引:1  
The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.  相似文献   

16.
徐逸  A.S.Boldarev  Dong Eon Kim  陈光龙 《物理学报》2015,64(1):13601-013601
本文通过对高背压(50 bar, 1 bar = 1.0×105 Pa)氩气经长锥型喷嘴(长度L=30 mm)向真空绝热膨胀所形成的超声气体团簇喷流的数值模拟, 分析比较了由喷嘴喉口起沿喷流方向在喷流中心轴线上团簇平均尺寸的演化情况. 结果表明: 沿喷流方向团簇平均尺寸显示先增长后趋于饱和的变化趋势, 具有较大尺寸团簇的区域出现在距离喷嘴喉口大约20 mm. 据此本文再结合关于喷流中原子密度沿喷流方向变化的模拟结果开展了锥形喷嘴长度的优化研究. 针对由常见构型的锥形喷嘴(喉径~ 0.5 mm, 半张角~ 8.5°)在高背压下形成的团簇喷流, 20 mm左右的长度为锥形喷嘴的适宜长度.  相似文献   

17.
The method is described and the experimental results are presented on the temperature determination of the (CF3I) N clusters in a beam (N ⩽ 102 is a number of monomers in a cluster) using SF6 molecules from intersecting molecular beam as probe thermometers. The SF6 molecules are captured by clusters in the crossed cluster and molecular beams and, after a certain time, sublimate from the surface of clusters carrying information on the velocity and temperature (internal energy) of clusters. Using time-of-flight (TOF) method the kinetic energy (velocity) of sublimated SF6 molecules was measured and the temperature of clusters was determined to be T cl = (88 ± 15) K.  相似文献   

18.
Absolute cross sections σ(E, N) of electron attachment to clusters (H2O) N , (N2O) N , and (N2) N for varying electron energy E and cluster size N are measured by using crossed electron and cluster beams in a vacuum. Continua of σ(E) are found that correlate well with the functions of electron impact excitation of molecules’ internal degrees of freedom. The electron is attached through its solvation in a cluster. In the formation of (H2O) N , (N2O) N , and (N2) N , the curves σ(N) have a well-defined threshold because of a rise in the electron thermalization and solvation probability with N. For (H2O)900, (N2O)350, and (N2)260 clusters at E = 0.2 eV, the energy losses by the slow electron in the cluster are estimated as 3.0 × 107, 2.7 × 107, and 6.0 × 105 eV/m, respectively. It is found that the growth of σ with N is the fastest for (H2O) N and (N2) N clusters at E → 0 as a result of polarization capture of the s-electron. Specifically, at E = 0.1 eV and N = 260, σ = 3.0 × 10−13 cm2 for H2O clusters, 8.0 × 10−14 cm2 for N2O clusters, and 1.4 × 10−15 cm2 for N2 clusters; at E = 11 eV, σ = 9.0 × 10−16 cm2 for (H2O)200 clusters, 2.4 × 10−14 cm2 for (N2O)350 clusters, and 5.0 × 10−17 cm2 for (N2)260 clusters; finally, at E = 30 eV, σ = 3.6 × 10−17 cm2 for (N2O)10 clusters and 3.0 × 10−17 cm2 for (N2)125 clusters. Original Russian Text ? A.A. Vostrikov, D.Yu. Dubov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 12, pp. 1–15.  相似文献   

19.
The adsorption behaviours of seven molecules (CO, CO2, N2, NO, O2, N2O and NO2) on Rh3X (X?=Sc-Zn, Y-Cd) clusters are systematically investigated by density-functional calculations. Rh3X clusters exhibit physical adsorption when interacting with CO2, CO, N2 and NO. The adsorption energies (Eads) can be ranked as follows: NO?>?CO?>?CO2?≥?N2. Compared with pure Rh4 cluster, the adsorption capacity changes with the doping element. Chemical adsorption can be obtained for Rh3X when adsorbing O2, N2O and NO2. Eads shows an order of Eads(O2)?>?Eads(NO2)?>?Eads(N2O). When O2 is adsorbed, energy barrier with doping Tc or Cr atom is substantially reduced, which indicates that chemical reactivity of O2 on Rh4 can be significantly enhanced. The doped rhodium clusters can be viewed as good candidates in the discrimination between different gas molecules.  相似文献   

20.
The features of the cascade of atomic collisions, the spatial distribution of dopes, and primary radiation damage in a near-surface region of cubic silicon carbide under bombardment by Si N ions and clusters (N = 1, 5, and 60) in the case of the same energy per one atom of the particle-projectile (200 and 1000 eV/atom) are studied in this paper. The study is carried out using classical molecular dynamics. As a result, several features of the low-energy implantation of polyatomic clusters in SiC(111) are revealed, namely, a relatively weak effect of the size of the implanted cluster on the distribution of ranges of incorporated atoms, a low degree of nonlinear effects at the cascade and postcascade stages, and formation of amorphous regions in the target during cluster implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号