首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase for microbial synthesis of shikimate pathway products provides an alternate strategy to circumvent the competition for phosphoenolpyruvate between 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) synthase and the phosphoenolpyruvate:carbohydrate phosphotransferase system in Escherichia coli. E. coli KDPGal aldolase was evolved using a combination of error-prone polymerase chain reaction, DNA shuffling, and multiple-site-directed mutagenesis to afford KDPGal aldolase variant NR8.276-2, which exhibits a 60-fold improvement in the ratio kcat/KM relative to that of wild-type E. coli KDPGal aldolase in catalyzing the addition of pyruvate to d-erythrose 4-phosphate to form DAHP. On the basis of its nucleotide sequence, NR8.276-2 contains seven amino acid changes from the wild-type E. coli KDPGal aldolase. Amplified expression of NR8.276-2 in the DAHP synthase and shikimate dehydrogenase-deficient E. coli strain NR7 under fed-batch fermentor-controlled cultivation conditions resulted in synthesis of 13 g/L 3-dehydroshikimic acid in 6.5% molar yield from glucose. Increased coexpression of the irreversible downstream enzyme 3-dehydroquinate synthase increased production of 3-dehydroshikimic acid to 19 g/L in 9.7% molar yield from glucose. Coamplification with transketolase, which increases d-erythrose 4-phosphate availability, afforded 16 g/L 3-dehydroshikimic acid in 8.5% molar yield.  相似文献   

2.
(6S)-6-Fluoroshikimate has antimicrobial activity. The molecular basis of this effect had not been identified, but there was speculation that (6S)-6-fluoroshikimate is first converted in vivo into 2-fluorochorismate, which then could inhibit 4-amino-4-deoxychorismate synthase (ADCS). 2-Fluorochorismate was prepared from E-fluorophosphoenolpyruvate and erythose-4-phosphate by the sequential reactions of DAHP synthase, dehydroquinate synthase, dehydroquinase, shikimate dehydrogenase, EPSP synthase, and chorismate synthase. Inhibition studies on ADCS showed that it was inhibited rapidly and irreversibly by 2-fluorochorismate. Electrospray mass spectrometry of the inactivated enzyme showed an additional mass of 198 +/- 10 Da. A novel peptide of 1087.6 Da was identified in the HPLC trace for the tryptic digest of 2-fluorochorismate-inactivated ADCS. Sequencing of this peptide by MS/MS showed that the peptide corresponded to residues 272-279 with a modification of 206.1 Da on Lys-274. This observation is particularly exciting in the context of a recent proposal for the catalytic mechanism of ADCS.  相似文献   

3.
With respect to the source of the nitrogen atom incorporated into the aminoshikimate pathway, d-erythrose 4-phosphate has been proposed to undergo a transamination reaction resulting in formation of 1-deoxy-1-imino-d-erythrose 4-phosphate. Condensation of this metabolite with phosphoenolpyruvate catalyzed by aminoDAHP synthase would then hypothetically form the 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate (aminoDAHP), which is the first committed intermediate of the aminoshikimate pathway. However, in vitro formation of aminoDAHP has not been observed. In this account, the possibility is examined that 3-amino-3-deoxy-d-fructose 6-phosphate is the source of the nitrogen atom of the aminoshikimate pathway. Transketolase-catalyzed ketol transfer from 3-amino-3-deoxy-d-fructose 6-phosphate to d-ribose 5-phosphate would hypothetically release 1-deoxy-1-imino-d-erythrose 4-phosphate. Along these lines, a chemoenzymatic synthesis of 3-amino-3-deoxy-d-fructose 6-phosphate was elaborated. Incubation of 3-amino-3-deoxy-d-fructose 6-phosphate in Amycolatopsis mediterranei crude cell lysate with d-ribose 5-phosphate and phosphoenolpyruvate resulted in the formation of aminoDAHP and 3-amino-5-hydroxybenzoic acid. 3-[15N]-Amino-3-deoxy-d-6,6-[2H2]-fructose 6-phosphate was also synthesized and similarly incubated in A. mediterranei crude cell lysate. Retention of both 15N and 2H2 labeling in product aminoDAHP indicates that 3-amino-3-deoxy-d-fructose 6-phosphate is serving as a sequestered form of 1-deoxy-1-imino-d-erythrose 4-phosphate.  相似文献   

4.
An M  Bartlett PA 《Organic letters》2004,6(22):4065-4067
[reaction: see text] Three ring-contracted mimics of shikimate-3-phosphate, formed from the triols by shikimate kinase, were evaluated as substrates of the next enzyme in the pathway, EPSP synthase. The cyclopentylidene analogue (+)-2P was converted enzymatically to the enolpyruvyl derivative, thus demonstrating the second step of an artificial biosynthetic sequence.  相似文献   

5.
Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate(KDO8P) synthase catalyzed the condensation reaction between D-arabinose 5-phosphate(A5P) and phosphoenolpyruvate(PEP) to form KDO8P and inorganic phosphate(Pi). The noncovalent tetrameric association ofKDO8P synthase was observed and dissociated in gas phase by means of electrospray ionization mass spectrometry under the very "soft" conditions. The results indicate that PEP-bound enzyme generated abundant tetrameric species as well as monomeric species at the "soft" conditions, whereas, the unbound enzyme favored the formation of a dimeric species. The mass spectra of the mixture of the enzyme with one of substrates, PEP, and A5P or one of products, KDO8P and Pi show that the complex of the unbound enzyme with PEP or Pi was prone to the formation of a monomeric species, whereas, that of the unbound enzyme with A5P or KDO8P was similar to the unbound enzyme. The intensity of the dimeric species increased with the increase of temperature at a collision voltage of 10 V. Taken together, the results presented here suggest that mass spectrometry will be a powerful tool to explore subtile conformational changes and/or subunit-subunit interactions of multiprotein assembly induced by ligand-binding and/or the changes of environmental conditions.  相似文献   

6.
This paper describes the recombinant expression of the ispC gene of Escherichia coli specifying 2C-methyl-D-erythritol 4-phosphate synthase in a modified form that can be purified efficiently by metal-chelating chromatography. The enzyme was used for the preparation of isotope-labeled 2C-methyl-D-erythritol 4-phosphate employing isotope-labeled glucose and pyruvate as starting materials. The simple one-pot methods described afford numerous isotopomers of 2C-methyl-D-erythritol 4-phosphate carrying (3)H, (13)C, or (14)C from commercially available precursors. The overall yield based on the respective isotope-labeled starting material is approximately 50%.  相似文献   

7.
Shikimate and other intermediates of the shikimate-chorismate pathway are densely functionalized structures that seem to offer limited options for skeletal modification. We designed and synthesized cyclopentylidenes 1 and 2, as well as cyclopentenes 3 and 4, as novel ring-contracted analogues of shikimic acid. Enzymatic studies showed that analogues 1-3 are indeed processed by shikimate kinase to give phosphates 1-P, 2-P, and 3-P as five-membered ring analogues of shikimate-3-phosphate. In particular, analogue 1 is converted by the enzyme at a rate only 3.5-fold slower than that of the native substrate, while analogue 3 binds to shikimate kinase with an apparent Km of 1.7 mM, compared to 0.14 mM for shikimate.  相似文献   

8.
A chemical synthesis of both diastereomers of the tetrahedral intermediate involved in 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) catalysis has been accomplished. Combination of methyl dibromopyruvate with a protected shikimic acid derivative, phosphorylation, and lactonization afforded the intermediates (S)-15 and (R)-15, whose configurations were assigned by NMR. After introduction of the 3-phosphate group and deprotection, photoinitiated radical debromination of the dibromo analogues (S)-5 and (R)-5 was accomplished with tributyltin hydride in mixed aqueous solvents in the presence of surfactant to give the pyruvate ketal phosphates (R)-TI and (S)-TI, respectively. These compounds are stable at high pH, but decompose at pH 7 with a half-life of ca. 10 min. (R)-TI proved to be inert to EPSPS, while (S)-TI was converted by the enzyme to a mixture of 5-enolpyruvylshikimate 3-phosphate, shikimate 3-phosphate, and phosphoenolpyruvate. The demonstration that the enzymatic intermediate possesses the S-configuration at the ketal center confirms the mechanism as an anti addition followed by a syn elimination. Furthermore, it appears that the syn stereochemistry of the second step requires the phosphate leaving group to serve as the base in catalyzing its own elimination.  相似文献   

9.
10.
Sedoheptulose 7-phosphate cyclases are enzymes that utilize the pentose phosphate pathway intermediate, sedoheptulose 7-phosphate, to generate cyclic precursors of many bioactive natural products, such as the antidiabetic drug acarbose, the crop protectant validamycin, and the natural sunscreens mycosporine-like amino acids. These proteins are phylogenetically related to the dehydroquinate (DHQ) synthases from the shikimate pathway and are part of the more recently recognized superfamily of sugar phosphate cyclases, which includes DHQ synthases, aminoDHQ synthases, and 2-deoxy-scyllo-inosose synthases. Through genome mining and biochemical studies, we identified yet another subset of DHQS-like proteins in the actinomycete Actinosynnema mirum and the myxobacterium Stigmatella aurantiaca DW4/3-1. These enzymes catalyze the conversion of sedoheptulose 7-phosphate to 2-epi-valiolone, which is predicted to be an alternative precursor for aminocyclitol biosynthesis. Comparative bioinformatics and biochemical analyses of these proteins with 2-epi-5-epi-valiolone synthases (EEVS) and desmethyl-4-deoxygadusol synthases (DDGS) provided further insights into their genetic diversity, conserved amino acid sequences, and plausible catalytic mechanisms. The results further highlight the uniquely diverse DHQS-like sugar phosphate cyclases, which may provide new tools for chemoenzymatic, stereospecific synthesis of various cyclic molecules.  相似文献   

11.
The five-carbon phosphorylated monosaccharide analogues, D-arabinose 5-phosphate, D-ribose 5-phosphate, and 2-deoxy-D-ribose 5-phosphate, were separately condensed with (Z)- and (E)-[3-(2)H]-phosphoenolpyruvate (PEP) in the presence of Escherichia coli 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH 7-P) synthase (phe) to give in the case of (Z)-[3-(2)H]-PEP (3S)-[3-(2)H]-3-deoxy-D-manno-octulosonate 8-phosphate, (3S)-[3-(2)H]-3-deoxy-D-altro-octulosonate 8-phosphate, and (3S)-[3-(2)H]-3,5-dideoxy-D-altro-octulosonate 8-phosphate, respectively, whereas incubation with (E)-[3-(2)H]-PEP gives the corresponding (3R)-monosaccharides. These results are in complete agreement with the observed facial selectivity of DAH 7-P synthase for its normal substrates D-erythrose 4-phosphate and PEP and provide direct evidence that DAH 7-P synthase (phe) catalyzes the si face addition of the C3 of PEP to the re face of C1 of the phosphorylated monosaccharides tested. Products formed by DAH 7-P synthase (phe)-catalyzed condensation of (Z)- and (E)-[3-F]-PEP with E 4-P were completely characterized by (1)H and (19)F NMR analysis for the first time. Results of our studies suggest that disappearence of the double bond between C2 and C3 of PEP and formation of a bond between C3 of PEP and C1 of the phosphorylated monosaccharide tested occur in concert during the DAH 7-P synthase-catalyzed condensation reaction.  相似文献   

12.
Hydroaromatic equilibration during biosynthesis of shikimic acid   总被引:3,自引:0,他引:3  
The expense and limited availability of shikimic acid isolated from plants has impeded utilization of this hydroaromatic as a synthetic starting material. Although recombinant Escherichia coli catalysts have been constructed that synthesize shikimic acid from glucose, the yield, titer, and purity of shikimic acid are reduced by the sizable concentrations of quinic acid and 3-dehydroshikimic acid that are formed as byproducts. The 28.0 g/L of shikimic acid synthesized in 14% yield by E. coli SP1.1/pKD12.138 in 48 h as a 1.6:1.0:0.65 (mol/mol/mol) shikimate/quinate/dehydroshikimate mixture is typical of synthesized product mixtures. Quinic acid formation results from the reduction of 3-dehydroquinic acid catalyzed by aroE-encoded shikimate dehydrogenase. Is quinic acid derived from reduction of 3-dehydroquinic acid prior to synthesis of shikimic acid? Alternatively, does quinic acid result from a microbe-catalyzed equilibration involving transport of initially synthesized shikimic acid back into the cytoplasm and operation of the common pathway of aromatic amino acid biosynthesis in the reverse of its normal biosynthetic direction? E. coli SP1.1/pSC5.214A, a construct incapable of de novo synthesis of shikimic acid, catalyzed the conversion of shikimic acid added to its culture medium into a 1.1:1.0:0.70 molar ratio of shikimate/quinate/dehydroshikimate within 36 h. Further mechanistic insights were afforded by elaborating the relationship between transport of shikimic acid and formation of quinic acid. These experiments indicate that formation of quinic acid during biosynthesis of shikimic acid results from a microbe-catalyzed equilibration of initially synthesized shikimic acid. By apparently repressing shikimate transport, the aforementioned E. coli SP1.1/pKD12.138 synthesized 52 g/L of shikimic acid in 18% yield from glucose as a 14:1.0:3.0 shikimate/quinate/dehydroshikimate mixture.  相似文献   

13.
A high-performance liquid chromatography assay for activity of 1-deoxy-D-xylulose 5-phosphate synthase, an early enzyme in the recently discovered 2-C-methyl-D-erythritol-4-phosphate pathway, was developed. In this assay, the enzymatic product 1-deoxy-D-xylulose was first derivatized with a fluorescent reagent 2-anthranilic acid, followed by separation using HPLC on a Nova-Pak phenyl column with a mobile phase containing CH3CN-water-1-butylamine-tetrahydrofuran-H3PO4 (2:97:0.125:0.5:0.25, v/v). The eluate was monitored by fluorescence detection at an excitation wavelength of 320 nm and an emission wavelength of 425 nm for quantitation of the fluorescent derivative. A linear response was obtained between 5 and 200 ng of 1-deoxy-D-xylulose. This assay was successfully applied to measure the 1-deoxy-D-xylulose 5-phosphate synthase activity in a recombinant E. coli overexpressing dxs gene. It demonstrated that this assay is simple, sensitive and selective compared to the methods used at present.  相似文献   

14.
Hyperthermophiles are a group of microorganisms that have their optimum growth temperature above 80 degrees C. More than 60 species of the hyperthermophiles have been isolated from marine and continental volcanic environments. Most hyperthermophiles belong to Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed the presence of unusual sugar metabolic processes in hyperthermophilic archaea, for example, a modified Embden-Meyerhof pathway, that has so far not been observed in bacteria and eucarya. Several novel enzymes, such as ADP-dependent glucokinase, ADP-dependent phosphofructokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate : ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase, have been found to be involved in a modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a unique mode of ATP regeneration has been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution.  相似文献   

15.
The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-D-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-D-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-D-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with D-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.  相似文献   

16.
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction.  相似文献   

17.
Flavonoids and stilbenes have attracted much attention as potential targets for nutraceuticals, cosmetics, and pharmaceuticals. We have developed a system for producing "unnatural" flavonoids and stilbenes in Escherichia coli. The artificial biosynthetic pathway included three steps. These included a substrate synthesis step for CoA esters synthesis from carboxylic acids by 4-coumarate:CoA ligase, a polyketide synthesis step for conversion of the CoA esters into flavanones by chalcone synthase and chalcone isomerase, and into stilbenes by stilbene synthase, and a modification step for modification of the flavanones by flavone synthase, flavanone 3beta-hydroxylase and flavonol synthase. Incubation of the recombinant E. coli with exogenously supplied carboxylic acids led to production of 87 polyketides, including 36 unnatural flavonoids and stilbenes. This system is promising for construction of a larger library by employing other polyketide synthases and modification enzymes.  相似文献   

18.
Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin, an essential metabolite that is involved in electron transport processes. To obtain structural probes of these two enzymes, as well as inhibitors of potential value as antibiotics, a series of ribitylpurinetriones bearing alkyl phosphate and alpha,alpha-difluorophosphonate substituents were synthesized. Since the purinetrione ring system and the ribityl hydroxyl groups can be alkylated, the synthesis required the generation of these two moieties in protected form before the desired alkylation reaction could be carried out. These substances were designed as intermediate analogue inhibitors of lumazine synthase that would bind to its phosphate-binding site. All of the compounds were found to be effective inhibitors of both Bacillus subtilis lumazine synthase as well as Escherichia coli riboflavin synthase. Molecular modeling of the binding of 3-(1,3,7,9-tetrahydro-9-D-ribityl-2,6,8-trioxopurin-7-yl)propane 1-phosphate provided a structural explanation for how these compounds are able to effectively inhibit both enzymes. Interestingly, the enzyme kinetics of these new compounds in comparison with the parent purinetrione demonstrated unexpectedly that the phosphate and phosphonate substituents contributed negatively to the binding. A possible explanation for these effects on lumazine synthase would be that the inorganic phosphate in the assay buffer competes with the substituted purinetriones for binding to the enzyme. This would be consistent with the observed increase in K(m) of the 3,4-dihydroxybutanone-4-phosphate substrate from 5.2 microM in Tris buffer or from 6.7 microM in MOPS buffer to 50 microM in phosphate buffer when tested on Bacillus subtilis lumazine synthase. However, when tested in Tris buffer vs Mycobacterium tuberculosis lumazine synthase, three of the phosphate inhibitors displayed inhibition constants in the 4-5 nM range, indicating that they are much more potent than the parent purinetrione. Under these conditions, the phosphate moieties of the inhibitors do contribute positively to their binding. The alpha,alpha-difluorophosphonate analogue, which is expected to have enhanced metabolic stability relative to the phosphates, was also found to be an inhibitor of Mycobacterium tuberculosis lumazine synthase with a K(i) of 60 nM.  相似文献   

19.
A method based on micellar electrokinetic capillary chromatography (MECC) has been developed for the determination of shikimate in water and crude plant extracts. The analytes are separated in a cholate-taurine buffer by MECC at pH 7.3 and measured by direct UV detection at 206 nm. Shikimate showed linearity up to 12.5 mM, with a squared correlation coefficient (r(2)) of 0.9997. The method has concentration limit of detection (cLOD) and concentration limit of quantification (cLOQ) at 24.4 and 67.8 microM, respectively, corresponding to detection in the femtomol range. The number of theoretical plates (N) was estimated to 245,000 for the optimized system using a capillary with an effective length of 560 mm. The method was tested on plant samples by measuring the shikimate content in leaves of rapeseed plants grown in hydroponic solutions containing the herbicide glyphosate, a well-known inhibitor of the shikimate pathway. In crude extracts of these plants, shikimate was found to accumulate in the leaves, confirming earlier reports of shikimate as a potential biomarker for glyphosate treatment. The method now developed was also able to detect shikimate-3-phosphate, but this compound was not accumulated in glyphosate inhibited plants as found for shikimate.  相似文献   

20.
The biosynthesis of the 3,4-dihydroxybenzoate moieties of the siderophore petrobactin, produced by B. anthracis str. Sterne, was probed by isotopic feeding experiments in iron-deficient media with a mixture of unlabeled and D-[(13)C6]glucose at a ratio of 5:1 (w/w). After isolation of the labeled siderophore, analysis of the isotopomers was conducted via one-dimensional (1)H and (13)C NMR spectroscopy, as well as (13)C-(13)C DQFCOSY spectroscopy. Isotopic enrichment and (13)C-(13)C coupling constants in the aromatic ring of the isolated siderophore suggested the predominant route for the construction of the carbon backbone of 3,4-DHB (1) involved phosphoenol pyruvate and erythrose-4-phosphate as ultimate precursors. This observation is consistent with that expected if the shikimate pathway is involved in the biosynthesis of these moieties. Enrichment attributable to phosphoenol pyruvate precursors was observed at C1 and C6 of the aromatic ring, as well as into the carboxylate group, while scrambling of the label into C2 was not. This pattern suggests 1 was biosynthesized from early intermediates of the shikimate pathway and not through later shikimate intermediates or aromatic amino acid precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号