首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isostructural compounds Sr(4)Bi(3), Ba(4)Bi(3), and Ba(4)As( approximately )(2.60) were prepared by direct reactions of the corresponding elements and their structures determined from single-crystal X-ray diffraction data as anti-Th(3)P(4) type in the cubic space group I43d, Z = 4 (a = 10.101(1) A, 10.550(1) A, 9.973 (1) A, respectively). The two bismuth compounds are stoichiometric, and the arsenide refines as Ba(4)As(2.60(2)). Only unrelated phases are obtained for all binary combinations among the title components for either Ca or Sb. The magnetic susceptibility and resistivities of Ba(4)Bi(3) and Eu(4)Bi(3) show that they are good metallic conductors ( approximately 40 microomega.cm at 298 K), whereas Ba(4)As(2.60) exhibits rho(150) > 1000 microomega.cm. The electronic structures of Sr(4)Bi(3), Ba(4)Bi(3), and Ba(4)As(3) were calculated by TB-LMTO-ASA methods. Mixing of cation d states into somewhat disperse valence p bands on Bi results in empty bands at E(F) and metallic behavior, whereas the narrower valence band in the electron-deficient Ba(4)As(3) leads to vacancies in about 11% of the anion sites and a valence compound.  相似文献   

2.
Wu L  Chen XL  Li H  He M  Xu YP  Li XZ 《Inorganic chemistry》2005,44(18):6409-6414
A series of novel borates, MM'4(BO3)3 (M = Li, M' = Sr; M = Na, M' = Sr, Ba), have been successfully synthesized by standard solid-state reaction. The crystal structures have been determined from powder X-ray diffraction data. They crystallize in the cubic space group Iad with large lattice parameters: a = 14.95066(5) A for LiSr4(BO3)3, a = 15.14629(6) A for NaSr4(BO3)3, and a = 15.80719(8) A for NaBa4(BO3)3. The structure was built up from 64 small cubic grids, in which the M' atoms took up the corner angle and the BO3 triangles or MO6 cubic octahedra filled in the interspaces. The isolated [BO3]3- anionic groups are perpendicular to each other, distributed along three 100 directions. The anisotropic polarizations were counteracting, forming an isotropic crystal. Sr and Ba atoms were found to be completely soluble in the solid solution NaSr(4-)xBax(BO3)3 (0 < or = x < or = 4). The photoluminescence of samples doped with the ions Eu2+ and Eu3+ was studied, and effective yellow and red emission was detected, respectively. The results are consistent with the crystallographic study. The DTA and TGA curves of them show that they are chemically stable and congruent melting compounds.  相似文献   

3.
Crystals of the composition Sr(2-x)Ba(x)Bi(3) (0 < or = x < or = 1.3) have been synthesized from the elements and were characterized by single-crystal and powder X-ray diffraction methods. The compounds crystallize for x = 0, 0.45, 0.86, 1.08, 1.28 in the structure type of the parent compound Sr 2Bi 3 with space group Pnna (No. 52) and Z = 4. Substitution of Sr by Ba leads to a site preference for Ba. The anionic Bi substructures in the pseudoternary system simultaneously distort under remarkable elongation of one distinct Bi-Bi contact. Magnetic measurements for samples with x = 0, 0.45 and 1.08 reveal superconducting transitions at low temperatures. Linear muffin-tin orbital band structure calculations of Sr(2)Bi(3) show strong cation-anion interactions that greatly stabilize the structure. Besides showing characteristics of a typical metal, the band structure plot unveils the co-instantaneous occurrence of flat and steep bands around the Fermi level indicative for superconductivity.  相似文献   

4.
Geng L  Cheng WD  Zhang H  Lin CS  Zhang WL  Li YY  He ZZ 《Inorganic chemistry》2011,50(6):2378-2384
Two new quaternary sulfides, Ba(2)SbFeS(5) and Ba(2)BiFeS(5), were synthesized by using a conventional high-temperature solid-state reaction method in closed silica tubes at 1123 K. The two compounds both crystallize in the orthorhombic space group Pnma with a = 12.128(6) ?, b = 8.852(4) ?, c = 8.917(4) ?, and Z = 4 for Ba(2)SbFeS(5) and a = 12.121(5) ?, b = 8.913(4) ?, c = 8.837(4) ?, and Z = 4 for Ba(2)BiFeS(5). The crystal structure unit can be viewed as an infinite one-dimensional edge-shared MS(5) (M = Sb, Bi) tetragonal-pyramid chain with FeS(4) tetrahedra alternately arranged on two sides of the MS(5) polyhedral chain via edge-sharing (so the chain can also be written as (1)(∞)[MFeS(5)](4-)). Interestingly, the compounds have the structural type of a Ba(3)FeS(5) high-pressure phase considering one Ba(2+) is replaced by one Sb(3+)/Bi(3+), with Fe(4+) reduced to Fe(3+) for in order to maintain the electroneutrality of the system. As a result, the isolated iron ions in Ba(3)FeS(5) are bridged by intermediate MS polyhedra in Ba(2)MFeS(5) (M = Sb, Bi) compounds and form the (1)(∞)[MFeS(5)](4-) chain structure. This atom substitution of Ba(2+) by one Sb(3+)/Bi(3+) leads to a magnetic transition from paramagnetic Ba(3)FeS(5) to antiferromagnetic Ba(2)MFeS(5), resulting from an electron-exchange interaction of the iron ions between inter- or intrachains. Magnetic property measurements indicate that the two compounds are both antiferromagnetic materials with Ne?el temperatures of 13 and 35 K for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively. First-principles electronic structure calculations based on density functional theory show that the two compounds are both indirect-band semiconductors with band gaps of 0.93 and 1.22 eV for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively.  相似文献   

5.
The new compounds, Sr6Sb6S17, Ba2.62Pb1.38Sb4S10, and Ba3Sb4.66S10 were prepared by the molten polychalcogenide salt method. Sr6Sb6S17 crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 8.2871(9) A, b = 15.352(2) A, c = 22.873(3) A, and Z = 4. This compound presents a new structure type composed of [Sb3S7]5- units and trisulfide groups, (S3)2-, held together by Sr2+ ions. The [Sb3S7]5- fragment is formed from three corner-sharing SbS3 trigonal pyramids. The trisulfide groups are separated from the [Sb3S7]5- unit and embedded between the Sr2+ ions. Ba3Sb4.66S10 and Ba2.62Pb1.38Sb4S10 are not isostructural but are closely related to the known mineral sulfosalts of the rathite group. Ba3Sb4.67S10 is monoclinic P2(1)/c with a = 8.955(2) A, b = 8.225(2) A, c = 26.756(5) A, beta = 100.29(3) degrees, and Z = 4. Ba2.62Pb1.38Sb4S10 is monoclinic P2(1) with a = 8.8402(2) A, b = 8.2038(2) A, c = 26.7623(6) A, beta = 99.488(1) degrees, and Z = 4. The Sb atoms are stabilized in SbS3 trigonal pyramids that share corners to build ribbonlike slabs, which are stitched by Ba/Pb atoms to form layers perpendicular to the c-axis. These materials are semiconductors and show optical band gaps of 2.10, 2.14, and 1.64 eV for Sr6Sb6S17, Ba3Sb4.66S10, and Ba2.62Pb1.38Sb4S10, respectively. Raman spectroscopic characterization is reported. Sr6Sb6S17, Ba3Sb4.66S10, and Ba2.62Pb1.38Sb4S10 melt congruently at 729, 770, and 749 degrees C, respectively.  相似文献   

6.
Syntheses,StructuresandPropertiesofSome NewCompositionPerovskiteCompounds:Sr_(0.6)Bi_(0.4)FeO_(2.7),Sr_(1-x)Bi_xFeO_(3-y) and Ba...  相似文献   

7.
The ternary arsenides A(2)Zn(2)As(3) and the quaternary derivatives A(2)Ag(2)ZnAs(3) (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A(2)Zn(2)As(3) crystallize with the monoclinic Ba(2)Cd(2)Sb(3)-type structure (Pearson symbol mC28, space group C2/m, Z = 4; a = 16.212(5) ?, b = 4.275(1) ?, c = 11.955(3) ?, β = 126.271(3)° for Sr(2)Zn(2)As(3); a = 16.032(4) ?, b = 4.255(1) ?, c = 11.871(3) ?, β = 126.525(3)° for Eu(2)Zn(2)As(3)) in which CaAl(2)Si(2)-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As-As bonds to form anionic slabs [Zn(2)As(3)](4-) separated by A(2+) cations. Compounds A(2)Ag(2)ZnAs(3) crystallize with the monoclinic Yb(2)Zn(3)Ge(3)-type structure (Pearson symbol mC32, space group C2/m; a = 16.759(2) ?, b = 4.4689(5) ?, c = 12.202(1) ?, β = 127.058(1)° for Sr(2)Ag(2)ZnAs(3); a = 16.427(1) ?, b = 4.4721(3) ?, c = 11.9613(7) ?, β = 126.205(1)° for Eu(2)Ag(2)ZnAs(3)), which can be regarded as a stuffed derivative of the Ba(2)Cd(2)Sb(3)-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr(2)Zn(2)As(3) is a narrow band gap semiconductor and Sr(2)Ag(2)ZnAs(3) is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr(2)Zn(2)As(3) and 0.02 eV for Eu(2)Zn(2)As(3), the latter undergoing an apparent metal-to-semiconductor transition at 25 K.  相似文献   

8.
The binary systems Ca-Sn, Ba-Sn, Eu-Sn, Yb-Sn, Sr-Pb, Ba-Pb, and Eu-Pb do not contain Cr(5)B(3)-like A(5)Tt(3) phases when care is taken to exclude hydrogen from the reactions (Tt = tetrel, Si-Pb). All form ternary A(5)Tt(3)H(x)() phases (x < or = 1) with "stuffed" Cr(5)B(3)-like structures instead, and all of those tested, Ca-Sn, Ba-Sn, Sr-Pb, and Ba-Pb, also yield the isostructural A(5)Tt(3)F. The structures and compositions of Ca(5)Sn(3)H(x), Ca(5)Sn(3)F(0.89), Eu(5)Sn(3)H(x), and Sr(5)Pb(3)F have been refined from single-crystal X-ray diffraction data and of Ca(5)Sn(3)D from powder neutron data. The interstitial H, F atoms are bound in a tetrahedral (A(2+))(4) cavity in a Cr(5)B(3)-type metal atom structure. Nine previous reports of binary "Ba(5)Sn(3)", "Yb(5)Sn(3)", "Sr(5)Pb(3)", and "Ba(5)Pb(3)" compounds were wrong and presumably concerned the hydrides. The new ternary phases are generally Pauli-paramagnetic, evidently with pi electrons from the characteristic tetrelide dimers in this structure type at least partially delocalized into the conduction band. The Sn-Sn bonds appear correspondingly shortened on oxidation. Other new phases reported are CaSn (CrB type), Yb(5)Sn(4)H(x) (Sm(5)Ge(4)), YbSn ( approximately TlTe), Ba(5)Pb(3) ( approximately W(5)Si(3)), and Yb(31)Pb(20) (Ca(31)Sn(20)).  相似文献   

9.
Pnictogenidostannates(IV) with Discrete Tetrahedral Anions: New Representatives (E1)4(E2)2[Sn(E15)4] (with E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) of the Na6[ZnO4] Type and the Superstructure Variant of K4Sr2[SnAs4] The silvery to dark metallic lustrous compounds (E1)4(E2)2[Sn(E15)4] (E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) were prepared from melts of stoichiometric mixtures of the elements. They crystallize in the Na6[ZnO4]‐type structure (hexagonal, space group: P63mc, Z = 2; Na4Ca2[SnP4]: a = 938.94(7), c = 710.09(8) pm; K4Sr2[SnAs4]: a = 1045.0(2), c = 767.0(1) pm; K4Ba2[SnP4]: a = 1029.1(6), c = 780.2(4) pm; K4Ba2[SnAs4]: a = 1051.3(1), c = 795.79(7) pm; K4Ba2[SnSb4]: a = 1116.9(2), c = 829.2(1) pm; K4Ba2[SnBi4]: a = 1139.5(2), c = 832.0(2) pm). The anionic partial structure consists of tetrahedra [Sn(E15)4]8– orientated all in the same direction along [001]. In the cationic partial structure one of the two cation positions is occupied statistically by alkali and alkaline earth metal atoms. Up to now only for K4Sr2[SnAs4] a second modification could be isolated, forming a superstructure type with three times the unit cell volume (hexagonal, space group: P63cm, Z = 6; a = 1801.3(2), c = 767.00(9) pm) and an ordered cationic partial structure.  相似文献   

10.
In this paper the synthesis and structural characterisation of two new K2NiF4-type phases, Ba2In(0.5)Sb(0.5)O4 and Sr2In(0.5)Sb(0.5)O4, are reported. These are the first examples of K2NiF4 compounds of general formula A2MIII(0.5)M'(V)(0.5)O4 with both 3+ and 5+ cations in the octahedral sites. Ba2In(0.5)Sb(0.5)O4 is shown to have a tetragonal cell [space group I4/mmm, a= 4.1651(1), c= 13.299(1) A] with an essentially disordered arrangement of In and Sb. In the case of Sr2In(0.5)Sb(0.5)O4, however, ordering of In and Sb is observed leading to an expanded unit cell [Pmcb, a= 5.7592(1), b= 5.7740(1), c= 12.543(1) A]. The results therefore show that varying the size of the alkaline earth cation has a pronounced effect on the ordering of In and Sb within the structure.  相似文献   

11.
在温和水热条件下合成了双钙钛矿型Ba2SmSbO6,通过XRD,IR,ICP,XPS,VSM和121SbMöss-bauer谱对产物的物相、结构、锑离子价态和磁化率等进行了表征.Ba2SmSbO6具有立方钙钛矿结构,Fm3m空间群,晶胞参数a=0.85097(20)nm,V=0.61623(20)nm,Sm和Sb离子呈岩盐型有序排列,锑为+5价.  相似文献   

12.
The ternary polar intermetallic phase Mg(5.231(8))Sm(0.769(8))Sb4 has been obtained from solid-state reactions at 700-850 degrees C in sealed Ta or Nb containers when the synthetic conditions took into account its characteristic incongruent melting point. The compound crystallizes in the trigonal space group P3 (Z = 1) with a = 4.618(1) A and c = 14.902(6) A in a structure that derives from that of Mg3Sb2 (anti-La2O3 type). This composition appears to be near the lower limit of Sm content, and solutions with appreciably higher Sm contents are also stable [Mg(6-x)SmxSb4, x 相似文献   

13.
The title compounds are synthesized from melts of composition A:M:O:H = 21:2:5:24 (A: Sr, Ba; M: Zn, Cd, Hg, In, Tl Si, Ge, Sn, Pb, As, Sb, Bi) using BaH2/SrH2 as hydrogen sources.  相似文献   

14.
A new selection method for atomic layer deposition (ALD) or chemical vapor deposition (CVD) precursors is proposed and tested. Density functional theory was used to simulate Sr and Ba precursors, and several precursors were selected and used to grow films via ALD as test cases for the precursor selection method. The precursors studied were M(x)2 (M = Sr, Ba; x = tetramethylheptanedionate (tmhd), acetylacetonate (acac), hexafluoroacetylacetonate (hfac), cyclopentadienyl (H(5)C(5)), pentamethylcyclopentadienyl (Me(5)C(5)), n-propyltetramethylcyclopentadienyl (PrMe(4)C(5)), tris(isopropylcyclopentadienyl) (Pr(3)(i)H(2)C(5)), tris(isopropylcyclopentadienyl)(THF) (Pr(3)(i)H(2)C(5))(OC(4)H(8)), tris(isopropylcyclopentadienyl)(THF)2 (Pr(3)(i)H(2)C(5))(OC(4)H(8))2, tris(tert-butylcyclopentadienyl) (Bu(3)(t)H(2)C(5)), tris(tert-butylcyclopentadienyl)(THF) (Bu(3)(t)H(2)C(5))(OC(4)H(8)), heptafluoro-2,2-dimethyl-3,5-octanedionate (fod)). The energy required to break bonds between the metal atom and the ligands was calculated to find which precursors react most readily. In the case of tmhd and Cp precursors, the energy required to break bonds in the precursor ligand was studied to evaluate the most likely mechanism of carbon incorporation into the film. Trends for Ba and Sr followed each other closely, reflecting the similar chemistry among alkaline earth metals. The diketonate precursors have stronger bonds to the metals than the Cp precursors, but weaker bonds within the ligand, explaining the carbon contamination found in experimentally grown films. Atomic layer deposition of SrO was tested with Sr(tmhd)2 and Sr(PrMe(4)Cp)2 and oxygen, ozone, and water as oxygen sources. No deposition was measured with tmhd precursors, and SrO films were deposited with PrMe(4)Cp with a source temperature of 200 degrees C and at substrate temperatures between 250 and 350 degrees C with growth rates increasing for oxygen sources in this order: O2 < H2O < O2 + H2O. The experimental results support the predictions based upon calculations: PrMe(4)Cp and Me(5)Cp precursors are expected to be the best precursors among those studied for Ba and Sr film growth.  相似文献   

15.
Heavy metal based oxide glasses having composition xBi(2)O(3).(0.30 - x)PbO.0.70B(2)O(3) have been prepared (0.00 < or = x < or = 0.15, mol%) containing 2.0mol% of V(2)O(5) by normal melt-quenching technique. Electron paramagnetic resonance (EPR), optical spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHP) of VO(2+) ions, dipolar hyperfine parameter, P and Fermi contact interaction parameter, K, molecular orbital coefficients (alpha(2) and gamma(2)) and optical band gap have been calculated. It is observed that in these glasses, the tetragonal nature of V(4+)O(6) complex increases with Bi(2)O(3) content. Increase in Bi(2)O(3):PbO ratio results in the contraction of 3d(xy) orbit of the unpaired electron in the vanadium ion, and the SHP are dependent on the theoretical optical basicity, Lambda(th). In present glasses, the conductivity (activation energy) first decreases (increases) with increase in mol% of Bi(2)O(3) content upto x = 0.08 and then shows a maxima (minima) at x = 0.10 and then starts decreasing (increasing) upto x < or = 0.15 with mol% of Bi(2)O(3) content.  相似文献   

16.
Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.nH2O (where, M = Ca,Sr,BaorPb andn = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3 :1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.  相似文献   

17.
A new family of quaternary fluoro-antimonides A(5)Cd(2)Sb(5)F (A = Sr, Ba, Eu) and oxyantimonides Ba(5)Cd(2)Sb(5)O(x) (0.5相似文献   

18.
张兰  尉继英  赵璇  李福志  江锋 《物理化学学报》2001,30(10):1923-1931
90Sr 是核电站放射性废液中需要重点去除的核素之一,水合锑氧化物Sb2O5·mH2O可以在酸性条件下选择性吸附脱除90Sr. 本文在以醇为溶剂的无水体系中,以化学性能较稳定且毒性低的SbCl3为原料,以紫外线照射辅助双氧水氧化及控制水解两步法制备出自掺杂型锑氧化物Sb(Ⅲ)/Sb2O5. 文中采用X射线光电子能谱(XPS)、X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱对材料结构进行结构表征,并采用批量实验方法研究不同Sb(Ⅲ)/Sb(total)比例与Sr(Ⅱ)吸附性能的相关性,以及溶液pH 值对Sr(Ⅱ)吸附性能的影响. 实验结果表明:Sb(Ⅲ)可在较大的比例范围内共存于立方烧绿石型Sb2O5晶格内,形成良好的固溶体Sb(Ⅲ)/Sb2O5;制备过程中通过控制醇溶剂的类型、氧化剂的添加方式以及两步反应温度,可以获得具有不同氧化率,即不同Sb(Ⅲ)/Sb(total)比例的Sb(Ⅲ)/Sb2O5材料;其中Sb(Ⅲ)/Sb(total)比例为49.8%的锑氧化物材料吸附性能最好,在纯水体系下对Sr(Ⅱ)的分配系数为6.6×107 mL·g-1,在pH=3-13 范围内对Sr(Ⅱ)具有良好的吸附性能,并且在本文实验条件下,Sr(Ⅱ)在锑氧化物材料上的吸附更好地符合Langmuir吸附模型.  相似文献   

19.
We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.  相似文献   

20.
Syntheses of title compounds, viz. N(CH2CH2NR)3E (1, E = Sb, R = Me; 4, E = Bi, R = Me; 6, E = Sb, R = SiMe3; 8, E = Bi, R = SiMe3), by the reaction of E(NAlk2)3 (3, E = Sb, Alk = Et; 5, E = Bi, Alk = Me) with N(CH2CH2NMeH)3 (2) or N(CH2CH2NSiMe3H)3 (7) are reported. The reactions of SbCl3 with N[CH2CH2N(Me)Li]3 or N[CH2CH2N(SiMe3)Li]3 and BiCl3 with N[CH2CH2N(SiMe3)Li]3 resulted in compounds 1, 6, and 8, respectively. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry. The X-ray structural study of 8 clearly indicated the presence of transannular interaction BiNdat in this compound, while 6 possesses a long Sb...Ndat distance. The structural data obtained from geometry optimizations on 6 and 8 reproduce experimental trends, i.e., a decrease in the E-Ndat distance from Sb to Bi. The values of electron density in E-Ndat critical point and the Laplacian of charge density for 8 indicate that a closed-shell interaction exists between the metal atom and Ndat atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号