共查询到20条相似文献,搜索用时 0 毫秒
1.
Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from d-ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase. 相似文献
2.
Arqam Alomari Robert Gowland Callum Southwood Jak Barrow Zoe Bentley Jashel Calvin-Nelson Alice Kaminski Matthew LeFevre Anastasia J. Callaghan Helen A. Vincent Darren M. Gowers 《Molecules (Basel, Switzerland)》2021,26(9)
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3′ hydroxyl and a 5′ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11–2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases. 相似文献
3.
Shiraishi H Itoh T Hayashi H Takagi K Sakane M Mori T Wang J 《Bioelectrochemistry (Amsterdam, Netherlands)》2007,70(2):481-487
A new DNA modified electrode for the electrochemical detection of 16S rDNA extracted from Escherichia coli (JCM1649) is proposed. The electrodes were fabricated by screen printing a fullerene-impregnated carbon ink onto a poly(methylmethacrylate) substrate and immobilizing a probe DNA on the surface after activating the electrode with air plasma. The results indicated a dramatic improvement in the surface coverage of the immobilized probe DNA, and of the reduction peak of the redox indicator (Co(phen)(3)(3+)) due to the incorporation of fullerene. By immobilizing the probe onto the fullerene-impregnated screen-printed electrodes, the PCR product of the 16S rDNA extracted from E. coli was directly detected without any pretreatment. A well defined signal difference was observed between the perfectly matching oligonucleotide and the mismatching one, and it was possible to detect the target at the modified electrode. This method enabled us to clearly detect the two base mismatches in the ca. 1500-bases long 16S rDNA sequence. 相似文献
4.
报道了一种对DNA连接过程进行实时监测的方法,利用分子信标核酸探针作为DNA连接反应的模板和检测探针,实时监测了 E.coli DNA连接酶催化的DNA连接反应,克服了传统的凝胶电泳技术操作复杂、周期长及无法实时监测DNA连接过程的缺点,为核酸连接过程的实时监测和连接酶催化机理的研究提供了更为丰富的信息.在此基础上,发展了一种快速、准确测定 E.coli DNA连接酶的方法,线性响应范围为4.0×10-6~2.0×10-4U/μL,检测下限为4.0×10-6U/μL. 相似文献
5.
A novel RNA-templated single-base mutation detection method based on T4 DNA ligase and reverse molecular beacon (rMB) has been developed and successfully applied to identification of single-base mutation in codon 273 of the p53 gene. The discrimination was carried out using allele-specific primers, which flanked the variable position in the target RNA and was ligated using T4 DNA ligase only when the primers perfectly matched the RNA template. The allele-specific primers also carried complementary stem structures with end-labels (fluorophore TAMRA, quencher DABCYL), which formed a molecular beacon after RNase H digestion. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as direct discrimination of single-base mismatch of the RNA extracted from cell; no requirement of PCR amplification; performance of homogeneous detection; and easily design of detection probes. 相似文献
6.
A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip. 相似文献
7.
C. Burstein H. Ounissi M. D. Legoy G. Gellf D. Thomas 《Applied biochemistry and biotechnology》1981,6(4):329-338
The use of immobilized enzymes has opened the possibility of large scale utilization of NAD+-linked dehydrogenases, but the applications of this technique were limited by the necessity of providing the large amounts
of NAD+ required by its stoichiometric consumption in the reaction. After immobilization of alcohol dehydrogenase and intactE. coli by glutaraldehyde in the presence of serum albumin, the respiratory chain was found to be capable of regenerating NAD+ from NADH. This NAD+ can be recycled at least 100 times, and thus the method is far more effective than any other, and, moreover, does not require
NADH oxydase purification. The total NADH oxidase activity recovered was 10–30% of the initial activity.
Although, NADH is unable to cross the cytoplasmic membrane, it was able to reach the active site of NADH dehydrogenase after
immobilization. The best yield of NADH oxidase activity with immobilized bacteria was obtained without prior treatment of
the bacteria to render them more permeable. The denaturation by heat of NADH oxidase in cells that are permeabilized was similar
before and after immobilization. In contrast, the heat denaturation of soluble Β-galactosidase required either a higher temperature
or a longer exposure after immobilization. The sensitivity of immobilized NADH oxidase to denaturation by methanol was decreased
compared to permeabilized cells. As a result, it is clear that the system can function in the presence of methanol, which
is necessary as a solvent for certain water insoluble substrates. 相似文献
8.
A Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor was developed for the amperometric detection of Escherichia coli (E. coli). Magnetic Fe2O3@Au nanoparticles were prepared by reducing HAuCl4 on the surfaces of Fe2O3 nanoparticles. This DNA biosensor is based on a sandwich detection strategy, which involves capture probe immobilized on magnetic nanoparticles (MNPs), target and reporter probe labeled with horseradish peroxidase (HRP). Once magnetic field was added, these sandwich complexes were magnetically separated and HRP confined at the surfaces of MNPs could catalyze the enzyme substrate and generate electrochemical signals. The biosensor could detect the concentrations upper than 0.01 pM DNA target and upper than 500 cfu/mL of E. coli without any nucleic acid amplification steps. The detection limit could be lowered to 5 cfu/mL of E. coli after 4.0 h of incubation. 相似文献
9.
Min Ruan Cheng-Gang Niu Pin-Zhu Qin Guang-Ming Zeng Zhao-Hui Yang Hui He Jing Huang 《Analytica chimica acta》2010,664(1):95-99
A two-probe tandem DNA hybridization assay based on time-resolved fluorescence was employed to detect Escherichia coli strain. The amino modified capture probe was covalently immobilized on the common glass slide surface. The Eu(TTA)3(5-NH2-phen) with the characteristics of long lifetime and intense luminescence was labeled with reporter probe. The original extracted DNA samples without the purification and amplification process were directly used in the hybridization assay. The concentration of capture probe, hybridization temperature, hybridization and washing time were optimized. The detection limit is about 1.49 × 103 CFU mL−1E. coli cells, which is comparable to the value of most microbiology methods. The proposed method has the advantages of easy operation, satisfactory sensitivity and specificity, which can provide a promising technique for monitoring the microorganisms. 相似文献
10.
A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor 总被引:1,自引:0,他引:1
We reported a rapid toxicity assay method using electrochemical biosensor for pesticides, Escherichia coli (E. coli) was taken as a model microorganism for test. In this method, we adopted ferricyanide instead of natural electron acceptor O2, and then microbial oxidation was substantially accelerated. Toxicity assays measured the effect of toxic materials on the metabolic activity of microorganisms. The current signal of ferrocyanide produced from the metabolism was proven to be directly related to the toxicity, which could be amplified by ultramicroelectrode array (UMEA). The ratio of the electrochemical signals, recorded in the presence and absence of toxin, provided an index of inhibition. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. 3,5-Dichlorophenol (DCP) was taken as the reference toxicant, its IC50 was estimated to be 8.0 mg/L. Three pesticides were examined using this method. IC50 values of 6.5 mg/L for Ametryn, 22 mg/L for Fenamiphos and 5.7 mg/L for Endosulfan were determined and in line with EC50 values reported in the literature. Atomic force microscopy (AFM) was also used for morphology characterization of E. coli induced by three pesticides. These results confirmed the present electrochemical method used is reliable. In addition, the electrochemical method is a sensitive, rapid and inexpensive way for toxicity assays of pesticides. 相似文献
11.
Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging 总被引:4,自引:0,他引:4
A rapid method based on hyperspectral imaging for detection of Escherichia coli contamination in fresh vegetable was developed. E. coli K12 was inoculated into spinach with different initial concentrations. Samples were analyzed using a colony count and a hyperspectroscopic technique. A hyperspectral camera of 400-1000 nm, with a spectral resolution of 5 nm was employed to acquire hyperspectral images of packaged spinach. Reflectance spectra were obtained from various positions on the sample surface and pretreated using Sawitzky-Golay. Chemometrics including principal component analysis (PCA) and artificial neural network (ANN) were then used to analyze the pre-processed data. The PCA was implemented to remove redundant information of the hyperspectral data. The ANN was trained using Bayesian regularization and was capable of correlating hyperspectral data with number of E. coli. Once trained, the ANN was also used to construct a prediction map of all pixel spectra of an image to display the number of E. coli in the sample. The prediction map allowed a rapid and easy interpretation of the hyperspectral data. The results suggested that incorporation of hyperspectral imaging with chemometrics provided a rapid and innovative approach for the detection of E. coli contamination in packaged fresh spinach. 相似文献
12.
A solid-state electrochemiluminescence (ECL) biosensing switch based on special ferrocene-labeled molecular beacon (Fc-MB) has been successfully developed for T4 DNA ligase detection. Such special switch system consisted of two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. A molecular beacon labeled by ferrocene as the ECL intensity switch. The molecular beacon is designed with special base sequence, which could combine with its target biomolecule via the reaction of the repair and recombination of nucleic acids by DNA ligase. During the reaction, the molecular beacon opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect to the ECL substrate. The analysis results are sensitive and specific. 相似文献
13.
Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles 总被引:1,自引:0,他引:1
Mechanisms of interaction of single-strand DNA and hybridized DNA on gold nanoparticles in the presence of Hg2+ was studied in this work. Recently the detection of Hg2+ using unmodified gold nanoparticles (AuNPs) combined with DNA is becoming a promising technique with the advantages of simplicity, cost-effectiveness and high sensitivity. However, few studies focused on the interaction of ssDNA and hybridized DNA on AuNPs to date. In the present work, we compared the interactions of different DNA probes on AuNPs using both absorption and fluorescence detection. It was found that there were only small partial dsDNA dissociated from the surface of AuNPs after hybridization in the presence of Hg2+. Moreover, we found that the aggregated AuNPs/DNA system tended to be dispersed again with increasing Hg2+ concentration up to 250 μM. Based on these results, the mechanisms of mercury detection based on interaction between DNA-conjugated gold nanoparticles were investigated. Positively charged dsDNA could bind to the surface of AuNPs and dominate the electrostatic interactions and consequently aggregation of the AuNPs/DNA system. 相似文献
14.
A tandem technique for the detection of very low levels E. coli within about 2 h is demonstrated. The technique couples the widely employed microbial enzymatic detection methods with an immunoassay step. The bacterial marker enzyme, E. coli β-D-galactosidase, was used in conjunction with synthetic enzyme substrates to produce products that could be measured with a highly sensitive enzyme-labelled immunosorbent assay (ELISA). The commercially available 4-methylumbelliferyl-β-D-galactoside and a newly prepared substrate, 4-methylcoumarin-3-propionate-7-O-β-D-galactoside, were used with an ELISA for 7-hydroxy-4-methylcoumarin to demonstrate the detection of low levels of E. coli. The 2 h test indicates that a few viable bacteria cells could be detected by the tandem procedure. The end point of the test is an ELISA with colorimetric measurement step. The novel approach retains the essential features of the microbial enzymatic detection procedures and provides a highly sensitive detection system that can be used for rapid screening or quantification of viable microbial cells in water samples. The tandem test is generic for commonly employed glycosidases and other marker enzymes for which 4-methylumbillerone substrates are available. 相似文献
15.
Dr. Giuseppe Pietricola Lesly Chamorro Dr. Micaela Castellino Diego Maureira Prof. Tonia Tommasi Prof. Simelys Hernndez Prof. Lorena Wilson Prof. Debora Fino Prof. Carminna Ottone 《ChemistryOpen》2022,11(11)
This study presents the immobilization with aldehyde groups (glyoxyl carbon felt) of alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH) on carbon‐felt‐based electrodes. The compatibility of the immobilization method with the electrochemical application was studied with the ADH bioelectrode. The electrochemical regeneration process of nicotinamide adenine dinucleotide in its oxidized form (NAD+), on a carbon felt surface, has been deeply studied with tests performed at different electrical potentials. By applying a potential of 0.4 V versus Ag/AgCl electrode, a good compromise between NAD+ regeneration and energy consumption was observed. The effectiveness of the regeneration of NAD+ was confirmed by electrochemical oxidation of ethanol catalyzed by ADH in the presence of NADH, which is the no active form of the cofactor for this reaction. Good reusability was observed by using ADH immobilized on glyoxyl functionalized carbon felt with a residual activity higher than 60 % after 3 batches. 相似文献
16.
Determination of DNA dephosphorylation is of great value due to its vital role in many cellular processes. Here we report a surface-extended DNA nanotail strategy for simple and ultrasensitive detection of DNA 3′-phosphatases by terminal deoxynucleotidyl transferase (TdT) mediated signal amplification. In this work, DNA probes labeled with thiols at their 5′ terminals and phosphoryls at 3′ terminals are immobilized on gold electrode and are used as substrates for DNA 3′-phosphatases, taking T4 polynucleotide kinase phosphatase (T4PNKP) as an example. T4PNKP can catalyze the dephosphorylation reaction of the substrate DNA, followed by the formation of a long DNA strand by TdT on its 3′ terminal hydroxyl, leading to an evident chronocoulometry signal enhancement. The proposal presents a considerable analytical performance with low detection limit and wide linear range, making it promise to be applied in the fields of DNA dephosphorylation related processes, drug discovery, and clinical diagnostics. 相似文献
17.
A rapid and sensitive DNA targets detection using enzyme amplified electrochemical detection (ED) based on microchip was described. We employed a biotin‐modified DNA, which reacted with avidin‐conjugated horseradish peroxidase (avidin–HRP) to obtain the HRP‐labeled DNA probe and hybridized with its complementary target. After hybridization, the mixture containing dsDNA‐HRP, excess ssDNA‐HRP, and remaining avidin–HRP was separated by MCE. The separations were performed at a separation voltage of +1.6 kV and were completed in less than 100 s. The HRP was used as catalytic labels to catalyze H2O2/o‐aminophenol reaction. Target DNA could be detected by the HRP‐catalyzed reduction with ED. With this protocol, the limits of quantification for the hybridization assay of 21‐ and 39‐mer DNA fragments were of 8×10?12 M and 1.2×10?11 M, respectively. The proposed method has been applied satisfactorily in the analysis of Escherichia coli genomic DNA. We selected the detection of PCR amplifications from the gene of E. coli to test the real applicability of our method. By using an asymmetric PCR protocol, we obtained ssDNA targets of 148 bp that could be directly hybridized by the single‐stranded probe and detected with ED. 相似文献
18.
This article describes a fast and simple electrochemical assay for detecting cell concentration.After cell death,the membrane of cells will be broken,and DNA molecules contained in the cells will be released,but this does not happen in living cells.Sodium molybdate can react with the phosphate backbone of the released DNA molecules to form phosphomolybdate precipitation and produces a corresponding redox current.The higher the concentration of DNA,the stronger the intensity of the current generated.Sodium molybdate solution and centrifuged cell supernatant were added onto the glassy carbon electrode to determine the cell concentration by measuring the current intensity.The cell viability,which means the ratio of living cells to the total cells,can also be determined by this method.This assay has the advantages of high sensitivity,low detection limit,and wide detection range.In addition,this method was successfully applied to the detection of cell concentration in human serum,which has potential clinical applications. 相似文献
19.
Hongxia Sun Hongbo Chen Xiufeng Zhang Yan Liu Aijiao Guan Qian Li Qianfan Yang Yunhua Shi Shujuan Xu Yalin Tang 《Analytica chimica acta》2016
There has been a big challenge in developing the Na+ sensor that can be practically used in the physiological system with the interference of large amounts of K+. In this research, a novel Na+ sensor has been designed based on the G-quadruplex-conformation related DNAzyme activity. The sensor exhibits high selectivity and sensitivity with the detection limit of 0.6 μM, which enables the sensor to be practically used in determination of the Na+ level in serum. The research not only provides a simple Na+ sensor but also opens a new way for developing the detection technology of Na+. 相似文献
20.
Selective attachment of Escherichia coli K-12 bacterial cells to charged gold surfaces was demonstrated. Electrostatic binding of E. coli K-12 bacterial cells to positively charged surfaces was observed starting at +750 mV. The binding of E. coli K-12 cells to positively charged gold surfaces is proposed to occur due to long-range electrostatic interactions between the negatively charged O-chain of lipopolysaccharide (LPS) molecules protruding the bacterial cell body and the electrode surface. Removing LPS alters the cellular surface charge and results in cellular attachment to negatively charged surfaces. Thus, applying an electrical potential allows for the direct, real time detection of live, dead or damaged bacterial cells. The attachment of E. coli K-12 bacterial cells to surfaces with an applied potential substantiates the hypothesis that an electrostatic interaction is responsible for the binding of bacterial cells to positively charged molecular assemblies on surfaces used for building bacterial microarrays. 相似文献