首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.  相似文献   

2.
3.
A rapid precise method of determining Mn(II) (as opposed to total manganese) in powdered barnacle shells by e.p.r. is described. The method is based on the linear relationships between the intensity of the first-derivative e.p.r. signal and the weight and Mn(II) concentration in the sample. Atomic absorption was used as a reference method. For eleven samples, the difference between the a.a.s. and e.p.r. methods was, on average, within 3 %; the detection limit was 20 p.p.b. A good correlation between the Mn(II) content of the shell and the position of the animal in an inter-tidal zone was found.  相似文献   

4.
5.
High-field electron paramagnetic resonance spectra were collected at several frequencies for a single crystal of [Zn3.91Ni0.09(hmp)4(dmb)4Cl4] (1), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxymethylpyridine. This crystal is isostructural to [Ni4(hmp)4(dmb)4Cl4] (2), which has been characterized to be a single-molecule magnet (SMM) with fast quantum tunneling of its magnetization (QTM). The single Ni(II) ion zero-field-splitting (zfs) parameters Di [= -5.30(5) cm(-1)] and Ei [= +/-1.20(2) cm(-1)] in the doped complex 1 were evaluated by rotation of a crystal in three planes. The easy-axes of magnetization associated with the single-ion zfs interactions were also found to be tilted 15 degrees away from the crystallographic c direction. This inclination provides a possible explanation for the fast QTM observed for complex 2. The single-ion zfs parameters are then related to the zfs parameters for the Ni4 molecule by irreducible tensor methods to give D = -0.69 cm(-1) for the S = 4 ground state of the SMM, where the axial zfs interaction is given by DS(Z)2.  相似文献   

6.
In the past, the method of reconstitution was used to investigate the interaction between metalloenzymes (containing Zn(II)) and metal ions. In this paper, electron paramagnetic resonance (EPR) has been employed to firstly study the direct interactions between Bacillus subtilis neutral proteinase (BSNP), nuclease P1 and Cu(II) ions added in aqueous solution, respectively. These results show that a dynamic equilibrium exists between the Zn(II) in the active site of native enzymes and the added Cu(II), the added Cu(II) partly replaces the Zn(II), forming Cu(II)-enzyme derivatives. As a result, the activity of the native enzymes is influenced. The influences of pH value on this kind of interaction have also been investigated, and the results demonstrate that the change of pH value has little influence on the system of nuclease P1, but has remarkable influence on BSNP. We firstly obtained the EPR spectra for Cu(II)-enzyme derivatives. In addition, the derivative of Cu(II)-BSNP exists in the solution with two different conformations (I type g(parallel)=2.34, A(parallel) (mT)=13.4; II type g(parallel)=2.25, A(parallel) (mT)=16.1), and this two conformations exchanged each other depending on pH.  相似文献   

7.
Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g(∥) orientation and (ii) potentially very many overlapping transitions in the g(⊥) region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (1-2 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra.  相似文献   

8.
High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study three complexes of high spin Manganese(III), 3d4, S = 2. The complexes studied were tetraphenylporphyrinatomanganese(III) chloride (MnTPPCI), phthalocyanatomanganese(III) chloride (MnPcCl), and (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III) (MnCor). We demonstrate the ability to obtain both field-oriented (single-crystal like) spectra and true powder pattern HFEPR spectra of solid samples. The latter are obtained by immobilizing the powder, either in an n-eicosane mull or KBr pellet. We can also obtain frozen solution HFEPR spectra with good signal-to-noise, and yielding the expected true powder pattern. Frozen solution spectra are described for MnTPPCl in 2:3 (v/v) toluene/CH2Cl2 solution and for MnCor in neat pyridine (py) solution. All of the HFEPR spectra have been fully analyzed using spectral simulation software and a complete set of spin Hamiltonian parameters has been determined for each complex in each medium. Both porphyrinic complexes (MnTPPCl and MnPcCl) are rigorously axial systems, with similar axial zero-field splitting (zfs): D approximately -2.3 cm(-1), and g values quite close to 2.00. In contrast, the corrole complex, MnCor, exhibits slightly larger magnitude, rhombic zfs: D approximtely -2.6 cm(-1), absolute value(E) approximately 0.015 cm(-1), also with g values quite close to 2.00. These results are discussed in terms of the molecular structures of these complexes and their electronic structure. We propose that there is a significant mixing of the triplet (S = 1) excited state with the quintet (S= 2) ground state in Mn(III) complexes with porphyrinic ligands, which is even more pronounced for corroles.  相似文献   

9.
A series of mixed-metal supramolecular porphyrin arrays in which the geometry of the central metal-polypyridyl moiety defines the spatial arrangement of two or more Ru(II)-porphyrin units through axial coordination have been prepared by employing self-assembly based protocols, and their photophysical and electrochemical properties have been studied. The electrochemical properties of the constituent parts of these arrays depend only on their own chemical environment, regardless of the nuclearity and the overall charge of the compound; in this way species with predetermined redox patterns can be obtained via the synthetic control of the self-assembly process. Interestingly, several of these arrays are luminescent both at room and at low temperatures, and in many cases core-to-periphery or periphery-to-core intramolecular energy transfer processes take place according to the nature of the central metal template.  相似文献   

10.
This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays.  相似文献   

11.
12.
Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) techniques were used to obtain structural information about the copper(II)-chelidamate complex. Well-resolved nitrogen ENDOR spectra could be recorded from solid solution samples by using selective excitation of spin packets. Evaluation of nuclear quadrupole and dipolar hyperfine interaction of the directly ligated nitrogen allowed for an identification of the bond direction to the copper ion within the eigen frame of the copper g-matrix. Invoking two-dimensional EPR techniques, additional hyperfine interaction with a "distant" nitrogen spin, identified as resulting from the solvent dimethylformamide (DMF), was observed. The experimental data are only consistent with formation of a stable pseudoplanar copper complex with single solvent ligation via its oxygen atom.  相似文献   

13.
The ligand 1,2-bis(benzimidazol-2-yl)-1,2-ethanediol (H2bzimed, 1) and its N-methylated analogue (H2mbzimed, 2) form a variety of polynuclear complexes with copper(II), all of which contain a planar Cu2O2 lozenge as a central element and in which the bridging oxygen belongs to an alkoxo group of the ligand. Syntheses are reported for dinuclear [Cu2(Hmbzimed)2](ClO4)2 x 1.5H2O, Cu(2)2(2), and the tetranuclear species [Cu4(Hbzimed)4(ClO4)2](NO3)2 x 4H2O, Cu(4)1(4), [Cu4(Hmbzimed)2(mbzimed)Cl2](ClO4)2 x 2H2O x C2H5OH, Cu(4)2(3), and rac-[Cu4(H2bzimed)4(bzimed)(ClO4)2](ClO4)4 x 1.5H2O x 3.5C2H5OH, Cu(4)1(5). Crystal structures are reported for the tetranuclear species. Cu(4)1(4) shows a cubane structure, Cu(4)2(3) a stepped cubane structure, and rac-Cu(4)1(5) a novel structure in which one doubly deprotonated ligand lies between the two Cu2O2 units. Magnetic susceptibility measurements indicate that all complexes show antiferromagnetic coupling in the solid state. Studies in solution (ESI-MS, CD, NMR) show that Cu(2)2(2) and Cu(4)2(3) persist in solution but that Cu(4)1(4) dissociates partially and rac-Cu(4)1(5) completely. The six coordination modes of the ligands are discussed together with the effect of the N-methylation on the ligand conformation.  相似文献   

14.
The nature of the interaction among Cu(II), adsorbed water, and quartz surface was studied using electron paramagnetic resonance (EPR) spectroscopy. The EPR lineshape gave information concerning the motional status of sorbed Cu(II) that revealed its binding strength at the surface. Two distinct absorption lines of sorbed Cu(II), namely, the liquid-type and the solid-type signal, were simultaneously observed at the fully hydrated surface at room temperature. The absorption lines and the variation of their intensity with experimental and measurement conditions such as degree of hydration, pH, ionic strength, and surface coverage indicated that there exist three kinds of Cu(II) entities, the inner-sphere surface complex, the outer-sphere surface complex, and the surface precipitate on the quartz surface, and that their concentrations change with experimental conditions. The reversible conversion of the liquid-type signal to the solid-type one during the drying-wetting or freezing-melting of the surface suggested the development of multiple layers of adsorbed water molecules on the quartz surface. It is assumed that the innermost layer of the water layers contains the inner-sphere Cu(II) surface complexes, while the outer layers contain the outer-sphere complexes whose binding strength decreases outward with increasing distance from the surface. The result of this work suggests that the sorption mechanism of a metal cation on a given mineral surface; hence its mobility in the environment may change significantly with the solution pH, the ionic strength, and the surface coverage.  相似文献   

15.
16.
《Polyhedron》2007,26(9-11):2299-2303
Variable high-frequency electron paramagnetic resonance data were collected for a single crystal of [Zn(hmp)(dmb)Cl]4 (1) doped with a small quantity of high spin Co(II), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxy-methylpyridine. The lack of solvent in the lattice of complex 1 results in very little disorder. Consequently, the EPR spectra are extremely sharp, enabling precise comparisons with theoretical simulations. We find the ground state of the Co(II) ions to be an effective spin S = 1/2 Kramers’ doublet with a highly anisotropic g-tensor. The anisotropy is found to be of the easy-axis type, with the single-ion easy axis directions tilted away from the crystallographic c direction by 58°.  相似文献   

17.
Five new Ni(II) complexes with pyridine carboxamide ligands have been synthesized and the crystal structures of three of the complexes were determined. Strong distortion effects of 6-methyl substitution were observed in the complexes with 6-methyl-substituted pyridyl bpb ligands. The C-H...F and C-H...O hydrogen bond interactions build extended architectures in the crystals studied. This result suggests that the steric effect of 6-methyl substitution plays an important role in the distortion of the structure, and the 6-methyl substitution can facilitate hydrogen bond interactions between methyl hydrogen atoms and O(carbonyl) or F atoms. Twelve Ni(II) complexes, including seven complexes reported previously, show reversible redox behavior, implying that the reduced Ni(I) state of each complex is stable in the time scale of CV measurement. The steric effect of R1 substituent and the electronic effects of X1 and X2 groups were found to be the main factors contributing to the shift of the redox potential of the Ni(II) complexes  相似文献   

18.
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriya's theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.  相似文献   

19.
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.  相似文献   

20.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号