首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qiu B  Xue L  Wu Y  Lin Z  Guo L  Chen G 《Talanta》2011,85(1):339-344
Inhibited Ru(bpy)32+ electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)32+/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO4, Cr2O72− and Fe(CN)63− are linear in the range of 1 × 10−7 to 3 × 10−4 M for MnO4 and Cr2O72−, and 1 × 10−7 to 1 × 10−4 M for Fe(CN)63−, with the limit of detection (LOD) of 8.0 × 10−8 M, 2 × 10−8 M, and 1 × 10−8 M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)32+/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)32+/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA·) by inorganic oxidants was proposed.  相似文献   

2.
《Electroanalysis》2005,17(7):589-598
The effect of 30 phenols and anilines on typical Ru complex electrochemiluminescence (ECL) was systematically investigated under different conditions. It was found that all the tested compounds showed an ECL inhibiting signal. The magnitude of ECL inhibition was related to the position of the substituting group in the benzene ring and decreased in the following order: meta‐>ortho‐>para‐. The oxidation potential of the tested compounds, the ECL spectra and UV‐visible absorption spectra of Ru(bpy) /tripropylamine (TPrA) in the presence of phenols and anilines, and the direct ECL between Ru(bpy) and phenols/aniline were studied. The mechanism of ECL inhibition has been proposed due to energy transfer from the excited state Ru(bpy) to a quinone or ketone or their polymer formed by electro‐oxidation of phenols and anilines. The potential of analytical application was explored by use of the inhibited ECL. The results demonstrate that numerous compounds are detectable with the detection limits in the range of 10?8–10?9 mol/L for Ru(bpy) /TPrA system and in the range of 10?6–10?7 mol/L for Ru(bpy) /C2O system, respectively.  相似文献   

3.
A new electrochemiluminescent (ECL) detection system equipped with an electrically controlled heating cylindrical microelectrode (HME) was developed in this paper. The cylindrical microelectrode made of platinum wire (25 μm in diameter, 6 mm in long) was used as the working electrode of the ECL detection system, the temperature of the electrode could be controlled electrically. The Ru(bpy)32+-ECL and Ru(bpy)32+-C2O42−-ECL systems were used to evaluate this ECL detection system. The detection limit for oxalate was found to be 3.0 × 10−4 mol/L when Te (temperature of the HME) was 22 °C, and found to be 3.0 × 10−6 mol/L at 80 °C, which indicates that the detection limit can be improved greatly at higher Te, based on which, it is possible to establish a more sensitive method for measurement of ECL by using a heated microelectrode.  相似文献   

4.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

5.
An electrochemiluminescence (ECL) inhibition method is developed for quantitative determination of four tetracyclines (TCs) in honey samples, including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC). It was found that the four TCs strongly inhibited the ECL signal of the Ru(bpy)32+/DBAE system. Based on the ECL signal changes, a simple and ultrasensitive detection method for TCs was thus established. The optimum experimental conditions including the scan mode and scan rate of the applied potential, the type of the buffer solution and its pH, and the concentration of Ru(bpy)32+ and DBAE for the ECL inhibition method, were investigated in detail. Under the optimized conditions, the quenched ECL intensity versus the logarithm of the concentration of TCs is in good linear relationship over a concentration range from 4.0 × 10−11 to 4.0 × 10−9 g mL−1. The detection limits were found to be 2.0 × 10−12 g mL−1. The results obtained by the proposed ECL system, in terms of sensitivity, were much better than those of previously reported methods. In addition, the method was applied successfully to determine the total residuals of the four TCs in honey samples. The relative standard deviations were found in a range of 4.9–14.3%, and the recoveries were obtained from 87.5% to 115.0%. A possible mechanism for the quenching effects of Ru(bpy)32+/DBAE system was also proposed.  相似文献   

6.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

7.
A new method for uric acid (UA) determination based on the quenching of the cathodic ECL of the tris(2,2-bipyridine)ruthenium(II)–uricase system is described. The biosensor is based on a double-layer design containing first tris(2,2-bipyridine)ruthenium(II) (Ru(bpy)32+) electrochemically immobilized on graphite screen-printed cells and uricase in chitosan as a second layer. The uric acid biosensing is based on the ECL quenching produced by uric acid over the cathodic ECL caused by immobilized Ru(bpy)32+ in the presence of uricase. The use of a −1.1 V pulse for 1 s with a dwelling time of 10 s makes it possible to estimate the initial enzymatic rate, which is used as the analytical signal. The Stern–Volmer type calibration function shows a dynamic range from 1.0 × 10−5 to 1.0 × 10−3 M with a limit of detection of 3.1 × 10−6 M and an accuracy of 13.6% (1.0 × 10−4 M, n = 5) as relative standard deviation. Satisfactory results were obtained for urine samples, creating an affordable alternative for uric acid determination.  相似文献   

8.
In this paper, we describe the electrochemiluminescent (ECL) behavior of Ru(bpy)33+-incorporated clay colloids. Experimental results based on the electrochemical-quartz-crystal-microbalance (EQCM) techniques showed that Ru(bpy)33+ could be adsorbed by the clay colloids (montmorillonite K10, denoted K10). The resulting clay particles could emit light (λem 610 nm) when they were fabricated as thin films sandwiched by two conductive ITO electrodes with opposite biases. These Ru(bpy)33+-incorporated clay-modified electrodes could also emit light in aqueous oxalate solutions (pH 10) when potentials more positive than 0.9 V vs. SCE were applied. EDTA was an effective promoter for the Ru(bpy)3 (clay)3+-oxalate ECL reaction. The resulting ECL showed a remarkable sensitivity to oxygen. A glucose optrode was thus fabricated based on the Ru(bpy)33+-incorporated K10 colloids and glucose oxidase (GOx). The ECL signals behaved as a function of [glucose], covering a range from 0.1 to 10 mM at pH 10. The detection limits reached a level of 0.1 mM at this pH.  相似文献   

9.
Ru(bpy) 3 2+ electrogenerated chemiluminescence (CL) has rapidly gained importance as a sensitive and selective detection method in analytical science. The Ru(bpy) 3 2+ ECL is observed when Ru(bpy) 3 3+ reacts with Ru(bpy) 3 + and yields an excited state Ru(bpy) 3 2+* . ECL emission can also be obtained when a variety of oxidants and reductants react with the reduced or oxidized forms of Ru(bpy) 3 2+ . Either the reductant or the oxidant can be treated as an analyte. The Ru(bpy) 3 2+ ECL is used as a detection method for the determination of oxalate and a variety of amine-containing analytes without derivatization in flowing streams such as flow injection and HPLC. When the ECL format is used as a detector for HPLC, unstable post-column reagent addition can often be eliminated and, the problems of both sample dilution and band broadening can be avoided because the Ru(bpy) 3 3+ species are generatedin situ in the reaction/observation flow cell. Since NADH is sensitively detected with the Ru(bpy) 3 2+ ECL, many clinically important analytes can be detected by coupling them to dehydrogenase enzymes that utilize -nicotinamide adenine cofactors to convert NAD+ to NADH. Ru(bpy) 3 2+ -derivatives are used as CL labels for immunoassay and PCR assay with Ru(bpy) 3 2+ /tripropylamine ECL system. The Ru(bpy) 3 2+ ECL label can be sensitively determined at subpicomolar concentrations, along with an extremely wide dynamic range of greater than six orders of magnitude. Furthermore, it can eliminate disposal and lifetime problems inherent in radio immunoassays. In this paper, basic principles of the Ru(bpy) 3 2+ ECL are discussed. In addition, analytical applications of the Ru(bpy) 3 2+ ECL are illustrated with examples.  相似文献   

10.
《Analytical letters》2012,45(1):116-126
The electrochemiluminescence of bis(2, 2′-bipyridine) (dipyrido[3, 2-a:2′ 3′-c]phenazine-N4N5) ruthenium(II) ([Ru(bpy)2(dppz)]2+) was used to monitor deoxyribonucleic acid (DNA) charge transfer with tri-n-propylamine as a coreactant. This system was used to measure damage to DNA induced by perfluorooctanoic acid. Fifteen-base pairs of double-stranded DNA with a thiol group at the 5′ end position were covalently bonded to a gold electrode. An electrochemiluminescence sensor was then constructed by incubating the modified gold electrode in [Ru(bpy)2(dppz)]2+ solution for 30 min. For comparison, single-stranded DNA, well-matched double-stranded DNA, and single base-mismatched double-stranded DNA were assembled on the gold surface. The results showed that the electrochemiluminescence behavior of the DNA sensors were unique. The electrochemiluminescence decreased when the [Ru(bpy)2(dppz)]2+-DNA ECL sensor was incubated in a perfluorooctanoic acid solution. The damage to DNA caused by perfluorooctanoic acid was monitored using a combination of DNA charge transfer theory and the interaction between DNA and [Ru(bpy)2(dppz)]2+. The detection limit for perfluorooctanoic acid was 1 × 10?12 mol/L. [Ru(bpy)2(dppz)]2+ was shown to be a sensitive electrochemiluminescence sensor for the determination of DNA damage.  相似文献   

11.
Ying Gao  Yuanhong Xu  Jing Li 《Talanta》2009,80(2):448-453
CE/Ru(bpy)32+ electrochemiluminescence (ECL) system with the assistance of ionic liquids (ILs) was successfully established for sensitive determination of verticine and verticinone in Bulbus Fritillariae for the first time. Migration behavior of alkaloid largely relies on the hydrogen bonding interactions between alkyl imidazolium cations in ILs and the alkaloids. Running buffer containing 40 mmol/L 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) IL-8 mmol/L phosphate resulted in significant changes in separation selectivity for alkaloids with similar structures. The highest sensitivity of the detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions, relative standard derivations of the ECL intensity and the migration time were 3.27 and 2.84% for verticine and 4.42 and 1.69% for verticinone, respectively. The standard curves were linear between 1 × 10−8 and 1 × 10−6 mol/L for verticine and between 5 × 10−8 and 1 × 10−6 mol/L for verticinone, respectively. Detection limits of 1.25 × 10−10 mol/L for verticine and 1 × 10−10 mol/L for verticinone were obtained (S/N = 3). Developed method was successfully applied to determine the amounts of alkaloids in Bulbus Fritillariae.  相似文献   

12.
Lei Qian  Xiurong Yang 《Talanta》2007,73(1):189-193
In this paper, we demonstrate an electrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) by the addition of silver(I) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)33+ with OH. The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)32+/tripropylamine and Ru(bpy)32+/C2O42− ECL systems.  相似文献   

13.
在十二烷基磺酸钠(SDS)中,考察了盐酸维拉帕米-Ru(bpy)3(2+)体系在金电极上的电化学及其发光行为.结果表明:SDS对体系的电化学反应和电化学发光强度具有显著的增敏作用.据此,建立了一种高效、简便的测定盐酸维拉帕米的电化学发光新方法.在最佳实验条件下,盐酸维拉帕米浓度在1.0×10(-4)~1.0×10(-2...  相似文献   

14.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

15.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

16.
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bpy)32+ and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)32+ by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 × 10−6 M for alcohol (S/N = 3) with a linear range from 2.79 × 10−5 to 5.78 × 10−2 M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.  相似文献   

17.
Liu H  Yuan R  Chai Y  Mao L  Yang X  Zhuo Y  Yuan Y 《Talanta》2011,84(2):387-392
A new electrochemiluminescence (ECL) detector for capillary electrophoresis (CE) based on tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in Nafion/PTC-NH2 (an ammonolysis product of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA)) composite film was presented for the first time. The Nafion/PTC-NH2 composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) via ion-exchange and electrostatic interaction. Cyclic voltammetric and ECL behavior of Nafion/PTC-NH2/Ru composite film was investigated compared to Nafion/Ru composite. The Nafion/PTC-NH2/Ru composite film exhibited good ECL stability and simple operability. Then the CE with solid-state ECL detector system was successfully used to detect sophora - a quinolizidine type - alkaloids as sophoridine (SR) and matrine (MT). The CE-ECL parameters that affected separation and detection were optimized. Under the optimized conditions, the linear range was from 2.5 × 10−8 to 2 × 10−6 mol/L for SR, 1.0 × 10−8 to 1.0 × 10−6 mol/L for MT. The detection limit (S/N = 3) was estimated to be 5 × 10−9 and 10−9 mol/L for SR and MT, respectively. It was shown that the CE coupling with solid-state ECL detector system exhibited satisfying sensitivity of analysis.  相似文献   

18.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

19.
Li F  Pang YQ  Lin XQ  Cui H 《Talanta》2003,59(3):627-636
Two maximal potential-resolved flow injection-electrochemiluminescent (FI-ECL) peaks were observed for Ru(bpy)32+/TPrA system at 0.90 and 1.05 V, and for Ru(phen)32+/TPrA at 1.01 and 1.25 V (vs. Ag/AgCl) in pH 8.0 phosphate buffer solutions. Sensitive ECL inhibition effects were observed in the presence of noradrenaline and dopamine for both of these systems. Therefore, an FI-ECL inhibition method for determination of noradrenaline and dopamine has been developed. Under optimal conditions, linear responses between logarithm of ECL intensity changes and logarithm of sample concentration were found for noradrenaline in the linear range (LR) of 4×10−8-1×10−5 mol l−1 with theoretical detection limit (DL) of 2.5×10−8 mol l−1 for Ru(bpy)32+/TPrA system, and in LR of 2×10−8-2×10−5 mol l−1 with DL of 7.1×10−9 mol l−1 for Ru(phen)32+/TPrA system; and for dopamine in LR of 8×10−8-2×10−5 mol l−1 with DL of 5.2×10−8 mol l−1 for Ru(bpy)32+/TPrA system, in LR of 4×10−8-2×10−5 mol l−1 with DL of 1.5×10−8 mol l−1 for Ru(phen)32+/TPrA system. It was applied for determination of commercial pharmaceutical injection samples with satisfied results. The mechanism of the inhibition effects was proposed in the preliminary way.  相似文献   

20.
A sensitive voltammetric method has been developed for the determination of total or single species of sulfur anions containing sulfide, sulfite and thiosulfate. The method is based on the catalytic effect of tris(2,2'-bipyridyl)Ruthenium(II) (Ru(bpy)2+ 2) as a homogeneous mediator on the oxidation of those anions at the surface of a glassy carbon electrode. A reversible redox couple of Ru(II)/Ru(III) were observed as a solute in aqueous solution. Cyclic voltammetry study showed that the catalytic current of the system depends on the concentration of the anions. Optimum pH values for voltammetric determination of sulfite, thiosulfate and sulfide has been found to be 5.6, 10.0 and 10.0, respectively. Under the optimized conditions the calibration curves have been obtained linear in the concentration ranges of 0.8–500.0, 0.4–1000.0 and 0.5–5000.0 µmol L− 1 of SO32−, S2O32− and S2−, respectively. The detection limits have been calculated to be 0.40, 0.17 and 0.33 µmol L− 1 for SO32−, S2O32− and S2−, respectively. The diffusion coefficients of sulfite and thiosulfate have been estimated using chronoamperometry. The chronoamperometric method also has been used to determine the catalytic rate constant for catalytic reaction of the Ru(bpy)2+ 2 with sulfite and thiosulfate. Finally the proposed method has been used for the determination of total sulfur contents in real samples of water and wastewater. Moreover the sulfite content in sugar and sulfur dioxide in air has been determined with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号