首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report adjustment on the self-assembly between polymer of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and inorganic molybdenum oxide layers from the micrometer scale to the nanometer scale. Our method is to break the strong interactions between the organic polymers by introducing suitable bridging agents and adjust the reaction speeds of the two competitive reactions in the reaction system. We use I2 to complex with PVA and break the strong hydrogen interactions between the PVA chains, resulting in a PVA-I2/(MoxOy)n− complex, in which the organic and inorganic species self-assemble homogenously on the molecular scale. We also adjust the thickness of the inorganic (MoxOy)n− layers in the hybrid of PVP/(MoxOy)n− by controlling the reaction speeds of the two competitive reactions: hydrolysis of Mo7O24 6− into (MoxOy)n− and packing into thick inorganic layers on the one hand, and hybridization of (MoxOy)n− and PVP into layered hybrid on the other hand. Experimental results proved that when the hydrolysis is overwhelming, the inorganic molybdenum oxide chains pack into heavy layers and self-assemble with PVP polymers on the micrometer scale, and when the hybrid reaction dominates, the organic polymer and molybdenum oxide hybridize on the molecular scale. These findings open new routes to disperse organic polymer and inorganic species homogenously and fabricate novel organic/inorganic hybrid nanomaterials in situ.  相似文献   

2.
Inserting polymers into a crystalline inorganic matrix to understand the structure, position, and the structure–property relationships of the resulting composites is important for designing new inorganic‐organic materials and tuning their properties. Single crystals of polymer‐chalcogenide composites were successfully prepared by trapping polyethyleneglycol within a selenidostannate matrix under surfactant‐thermal conditions. This work might provide a new strategy for preparing novel crystalline polymer‐inorganic composites through encapsulating polymer chains within inorganic matrices.  相似文献   

3.
A new and universal synthetic strategy to hybridize metal oxides and conduct polymer nanocomposites has been proposed in this work. The simultaneous reaction process, which includes the generation of metal oxide layers, the oxidation polymerization of monomers, and the in situ formation of polymer–metal oxides sandwich structure is successfully realized and results in the unique hybrid polyaniline (PANI)‐intercalated molybdenum oxide nanocomposites. The peroxomolybdate proved to play a dual role as the precursor of the inorganic hosts and the oxidizing agent for polymerization. The as‐obtained hybrid nanocomposites present a flexible lamellar structure by oriented assembly of conductive PANI chains in the MoO3 interlayer, and thus inherit excellent electrical performance and possess the potential of active electrode materials for electrochemical energy storage. Such uniform lamellar structure together with the anticipated high conductivity of the hybrid PANI/MoO3 nanocomposites afford high specific capacitance and good stability during the charge–discharge cycling for supercapacitor application.  相似文献   

4.
Summary.  Transparent nanocomposite gels made of hybrid organic/inorganic polymers, synthesized through the sol-gel method, composed of poly-(ethylene oxide) or poly-(propylene oxide) chains, and grafted on silica through urea bridges, have been studied by steady-state and time-resolved photoluminescence techniques. These nanocomposite materials consist of two distinguished subphases, an organic and an inorganic one. The volume fraction of the organic (polyether) subphase is larger than that of the inorganic (silica) subphase, and it increases with increasing polyether chain size. The condensation of the silica subphase provides luminescent entities emitting light by electron-hole recombination on delocalized states associated with the active chemical species of the urea bridges. Materials with smaller polyether chains are more luminescent than such with longer polyether chains. Divalent or trivalent cations introduced into these materials enhance the luminescence intensity by solubilization close to the silica cluster surface and thus by decreasing surface defects and the ensuing quenching mechanism. Received June 23, 2000. Accepted (revised) July 18, 2000  相似文献   

5.
A new type of organic intercalation system using poly(muconic acid) and poly(sorbic acid) crystals as the host compounds is described. The layered polymer crystals as the host are derived from benzyl-, dodecyl-, or naphthylmethylammonium salts of (Z,Z)-muconic or (E,E)-sorbic acids by topochemical polymerization. The subsequent solid-state hydrolysis of the resulting ammonium polymer crystals provides the corresponding carboxylic acid polymer crystals. When alkylamines are reacted with poly(muconic acid) or poly(sorbic acid) crystals dispersed in methanol at room temperature for a few hours, the intercalation proceeds to give layered ammonium polymer crystals via solid-state reactions, in which the polymers maintain a layered structure throughout. The interplanar spacing value of the polymer crystals changes according to the size of the guest molecules; that is, it exactly depends on the carbon number of the alkylamines used for each reaction of poly(muconic acid) or poly(sorbic acid) crystals. The stacking structure of alkyl chains with a tilt in the intercalated alkylammonium layers exists irrespective of the chemical and crystal structures of the host polymers. The intercalation of higher alkylamines into poly(muconic acid) crystals proceeds fast and quantitatively, while the conversion is dependent on the reaction conditions such as the structure and amount of the amine and the reaction time during the intercalation with poly(sorbic acid) crystals, due to the difference in the repeating layered structures of these polymer crystals. Some functional amines are also used as the guest molecules for this organic intercalation system.  相似文献   

6.
Summary.   Silicon oxide or metal oxide clusters or small particles with polymerizable organic groups covalently bonded to their surface can be copolymerized with organic monomers by various polymerization techniques. Whereas the preparation and properties of the polymers reinforced by R 8Si8O12 have already been well investigated, analogous materials with incorporated transition metal oxide clusters are only beginning to show their potential as an interesting new class of inorganic-organic hybrid polymers. In the second part of the article, approaches are reviewed in which the inorganic building block serves as an initiator for polymerization reactions. This results in materials in which the organic polymer is grafted from an inorganic core. Most work has been done with surface-modified silica particles. Free radical polymerizations and atom transfer radical polymerizations with macroinitiators are summarized. The latter method results in polymeric particles in which an inorganic core is surrounded by an organic polymer shell. A new approach is the use of polyfunctional inorganic molecules or molecular clusters as initiators. Received July 28, 2000. Accepted August 7, 2000  相似文献   

7.
以三氧化钼为无机主体, 用十二烷基胺对三氧化钼层间进行改性, 成功地制备了三氧化钼/苯胺层状复合材料. X射线衍射、元素分析、扫描电子显微镜、红外光谱测试及差热分析结果表明, 苯胺分子已成功地插入三氧化钼层间, 所得复合物化学式为[ANI]0.4MoO3. 插层后, 三氧化钼仍保持规则有序的层状结构, 其层间距扩大至1.318 nm. 讨论了无机主体与有机客体之间的相互作用、苯胺在层间的可能排布形式以及苯胺插入层间的反应机理.  相似文献   

8.
One-dimensional molybdenum oxide nanostructures with layered mesostructures were prepared directly from commercial bulk MoO3 crystals by a surfactant-templated hydrothermal process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectra, and thermal analyses have been used to characterize the obtained molybdenum oxide nanomaterials. By use of cetyltrimethylammonium bromide as the structure-directing template, novel molybdenum oxide nanofibers with triple interlayer distances of 2.84, 2.66, and 2.46 nm have been obtained. The nanofibers have diameters of 20-100 nm and length up to 20 microm. The growth of multilamellar molybdenum oxide nanofibers can be interpreted by the combination of surfactant/inorganic self-assembly process and host/guest intercalation chemistry. On the basis of the X-ray diffraction and infrared results, a possible arrangement of surfactant in the interlayer space of molybdenum oxide by bilayer micelles with different tilt angles has been proposed. In addition, the thermal stability of surfactant has been improved by intercalation. Moreover, molybdenum oxide nanobelts with two kinds of interlayered structures were also produced in the presence of n-alkylamines (n = 12, 14, 16, and 18) following a similar method, these nanobelts show length up to more than 10 microm, width ranging between 200 and 600 microm, and width-to-thickness ratios of about 3-12. A linear relationship is observed between the interlayer distance and the number of carbon atoms in n-alkyl chains.  相似文献   

9.
Nonlinear optical (NLO) responses from organic dyes can be maximized when the dyes are aligned in appropriate manners in bulk materials. The use of restricted nanospaces provided by interlayer spacing of inorganic layered materials is a promising strategy for imposing suitable molecular alignments for NLO materials on dyes. The hybrid materials thus obtained exhibit salient NLO responses owing to the improved molecular orientation. In some cases, extension of the π‐electron system as a consequence of improved molecular planarity, obtained by the intercalation of a dye into the 2‐dimensional interlayer space of an inorganic layered material, is also observed as a factor that enhances NLO responses of chromophores at the molecular level. This review focuses on recent progress in the strategies for controlling the molecular orientation of NLO‐phores by employing clay minerals, which are one of the typical inorganic layered materials. In addition, development of a means for fabricating composites that satisfy the properties of an optical material, such as a sufficient size and thickness, a flat surface, and low light‐scattering characteristics is required to utilize the superior NLO properties observed for clay/dye hybrid materials for practical applications. A novel means for obtaining such a hybrid material is also outlined.  相似文献   

10.
Preparation of new MoS2 layered compounds, in which organic dyes (rhodamine 6G, oxazine 1, and thionine) were used as the guest components, was successfully realized in two reaction systems differing by the nature of molybdenum disulfide. In one system, MoS2 was used in the form of single-layer dispersion in aqueous media; in the other system, it was taken in the form of nanodispersed powdered material, res-MoS2, obtained by exfoliation-restacking procedure and suspended in non-aqueous solvent. Structures of prepared compounds are discussed on the basis of their compositions, X-ray diffraction and high-resolution transmission electron microscopy data. The hybrid compounds formed in single-layer dispersions were found to contain the MoS2 layers, each of which alternate with dye layer, whereas, in the case of res-MoS2 the same as well as the other sequences of organic and inorganic layers are formed depending on the reaction conditions. The vicinity of different-thickness domains was revealed within the guest layers of rhodamine and oxazine. It results from different packings of organic molecules and sufficient flexibility of molybdenum disulfide layers.  相似文献   

11.
Alginic acid, a biopolymer produced by brown seaweed, is incorporated between the sheets of a layered double hydroxide (LDH) via direct coprecipitation. The growth of the inorganic crystalline seeds over the polymer gives rise to a lamellar structure. The obtained nanocomposite presents a basal spacing in agreement with the ideal picture of the polymer lying perpendicularly to the inorganic sheets. A study using FTIR and 13C CP-MAS spectroscopies suggests that the interaction between the organic guest and the inorganic framework is weak. However, the polymer has a stabilizing effect in temperature, since ZnO is observed at 350°C, whereas it appears at 200°C for the chloride LDH pristine material.  相似文献   

12.
Incorporating inorganic particles into conjugated polymer matrices is an area of current interest in the fields of optoelectronics and solar energy. The hybrid nanocomposites exhibit interesting physical properties thanks to good optical properties of polymers and to high carrier mobility of inorganic semiconductors. A judicious combination of organic/inorganic can therefore provide materials of low cost, ease processing, high stability, with specific electrical and optical properties.In the present study, we briefly review the composite materials that have been successfully utilized in the field of optoelectronics and photovoltaic conversion. We shall describe in particular a family of nanocomposites using polyhedral oligomeric silsesquioxanes (POSS) of general formula (RSiO3/2)n where R is an organic group as a core. The composites are made by grafting functional polymer groups to the core, which allows the control of their optical properties. Such composites have high mechanical resistance and stability because of the special structure of the core. For illustration, we present a study of polyfluorene (PF)/POSS materials used as an active layer in organic light emitting diodes, with improved performance as compared to those using polymer only, and we discuss the role of the particles in the transport and emission processes in the devices studied.  相似文献   

13.
花瓣状微球MoS_2/石墨烯复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
采用有利于二维层状结构形成的L-半胱氨酸作为硫源,钼酸钠作为钼源,制备聚乙烯基吡咯烷酮(PVP)辅助水热合成花瓣状微球形貌的MoS2/还原氧化石墨烯复合电极材料(PVP-MoS2/RGO).X射线衍射(XRD)及透射电子显微镜(TEM)证实,经过PVP的适量添加,MoS2有序堆垛结构的片层数目明显减少.扫描电子显微镜(SEM)显示,添加适量PVP的MoS2/石墨烯材料具有分散性更好的花瓣状微球形貌.上述的少层有序堆垛结构及复合材料的良好分散性缩短了MoS2中锂离子的嵌入/脱出路径,使其具有更高的容量、循环稳定性和倍率性能.  相似文献   

14.
Some problems related to conservation of existing organic large-scale polymers (polyolefins, PS, PVC, polyesters, PA, etc.) and their replacement with recycled polymers and inorganic polyoxides are revisited: recycling of polymer materials; recyclable sources, such as cellulose, chitin, starch, etc.; enrichment of composites with an inorganic component; inorganic polymers; nanomaterials; and gradient materials.  相似文献   

15.
A solvothermal method has been used to prepare hybrid inorganic–organic composites with a lamellar structure in which layers of wurtzite ZnS are separated by intercalated diamine molecules. A hybrid composite prepared with diethylenetriamine has been isolated and characterised and its structure and properties compared with those of the composite prepared using ethylenediamine. Comparative structural and morphological studies of the two lamellar hybrid composites are described on the basis of powder XRD, electron and scanning probe microscopies and thermal analysis of the materials.  相似文献   

16.
采用有利于二维层状结构形成的L-半胱氨酸作为硫源,钼酸钠作为钼源,制备聚乙烯基吡咯烷酮(PVP)辅助水热合成花瓣状微球形貌的MoS2/还原氧化石墨烯复合电极材料(PVP-MoS2/RGO). X射线衍射(XRD)及透射电子显微镜(TEM)证实,经过PVP的适量添加,MoS2有序堆垛结构的片层数目明显减少. 扫描电子显微镜(SEM)显示,添加适量PVP的MoS2/石墨烯材料具有分散性更好的花瓣状微球形貌. 上述的少层有序堆垛结构及复合材料的良好分散性缩短了MoS2中锂离子的嵌入/脱出路径,使其具有更高的容量、循环稳定性和倍率性能.  相似文献   

17.
Polyolefins are basic materials in the plastics. Their application is limited by their low thermostability, adhesion, hardness and other physico-mechanical properties. The following treatments are known to improve and modify polyolefin properties: the incorporation of inorganic or organic fillers with a greater hardness and rigidity into the polyolefin matrix, the grafting of functional groups to polyolefins, and crosslinking with the formation of a network structure in the polyolefin matrix. In the case of polymers and inorganic materials, the activation of their surface by the functionalizing and fixing of transition metals allows one to perform polymerization of monomers on a surface to obtain a polymer–polymer composites and a highly filled polymer–inorganic composites.  相似文献   

18.
 Polymeric systems have played an important role as structure-directing agents and in the control of nucleation and growth of crystals. This article reviews the work of our research group in the field of the polymer-assisted crystallization of inorganic materials, mainly focused on the formation of highly ordered, porous molybdenum oxide nanostructures. Different experimental parameters including the influence of poly(ethylene oxide)-containing polymers on the morphology and structure of the products obtained from peroxomolybdate solutions are examined. Our electrochemical investigations on molybdate species are also briefly described. Finally, the importance of the precursor species in the formation of the final product is discussed.  相似文献   

19.
We report the preparation of a new class of lamellar hybrid organic–inorganic materials obtained by self-assembly of bridged organosilica precursors containing long alkylene chains during the sol–gel process. The self-assembly is induced by lipophilic van der Waals interactions. The introduction of –SS– bonds in the core of the alkylene chains permitted the functionalisation of lamellar materials, which were subsequently transformed into SH and –SO3H groups. This methodology was extended to the formation of lamellar hybrid materials containing amino groups thanks to CO2 as bridging groups as well as the formation of lamellar hybrid materials containing carboxylic groups. In this last case, the hydrolysis and polycondensation of cyanoalkyltrialkoxysilanes permitted the one pot synthesis of lamellar hybrid materials thanks to in situ hydrogen bonds formation between carboxylic acids groups. All these functional lamellar materials exhibit a very high chelating capability towards transition metal and lanthanide ions.  相似文献   

20.
Polymeric systems have played an important role as structure-directing agents and in the control of nucleation and growth of crystals.This article reviews the work of our research group in the field of the polymer-assisted crystallization of inorganic materials,mainly focused on the formation of highly ordered,porous molybdenum oxide nanostructures.Different experimental parameters including the influence of poly(ethylene oxide)-containing polymers on the morphology and structure of the products obtained...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号